1. Shafiee G, Mousavian AH, Sheidaei A, Ebrahimi M, Khatami F, Gohari K, et al. The 15-year national trends of genital cancer incidence among Iranian men and women; 2005–2020. BMC Public Health 2023; 23: 495. doi: 10.1186/s12889-023-15417-0. 2. Miyai M, Iwama T, Hara A, Tomita H. Exploring the Vital Link Between Glioma, Neuron, and Neural Activity in the Context of Invasion. Am J Pathol 2023;193: 669-79. doi: 10.1016/ j.ajpath.2023.02.018. 3. Zhao S, Chi H, Yang Q, Chen S, Wu C, Lai G, et al. Identification and validation of neurotrophic factor-related gene signatures in glioblastoma and Parkinson’s disease. Front Immunol 2023; 14:1090040. doi: 10.3389/fimmu.2023.1090040. 4. Gliwińska A, Czubilińska-Łada J, Więckiewicz G, Świętochowska E, Badeński A, Dworak M, et al. The role of brain-derived neurotrophic factor (BDNF) in diagnosis and treatment of epilepsy, depression, schizophrenia, anorexia nervosa and Alzheimer’s disease as highly drug-resistant diseases: a narrative review. Brain Sci 2023; 13 :163. doi: 10.3390/brainsci13020163. 5. Hua Z, Zhan Y, Zhang S, Dong Y, Jiang M, Tan F, et al. P53/PUMA are potential targets that mediate the protection of brain-derived neurotrophic factor (BDNF)/TrkB from etoposide-induced cell death in neuroblastoma (NB). Apoptosis 2018; 23:408-19. doi: 10.1007/s10495-018-1467-6. 6. Lu L, Liu X, Huang WK, Giusti-Rodríguez P, Cui J, Zhang S, et al. Robust Hi-C maps of enhancer-promoter interactions reveal the function of non-coding genome in neural development and diseases. Mol cell 2020 6;79: 521-34. /doi :10.1016/j.molcel.2020.06.007. 7. Huang T, Larsen KT, Ried‐Larsen M, Møller NC, Andersen LB. The effects of physical activity and exercise on brain‐derived neurotrophic factor in healthy humans: A review. Scand J Med Sci Sports 2014; 24: 1-0. doi: 10.1111/sms.12069. 8. Tomlinson L, Leiton CV, Colognato H. Behavioral experiences as drivers of oligodendrocyte lineage dynamics and myelin plasticity. Neuropharmacology 2016; 110 :548-62. doi: 10.1016/j.neuropharm. 2015.09.016. 9. Lin JY, Kuo WW, Baskaran R, Kuo CH, Chen YA, Chen WS, et al. Swimming exercise stimulates IGF1/PI3K/Akt and AMPK/SIRT1/PGC1α survival signaling to suppress apoptosis and inflammation in aging hippocampus. Aging (albany NY) 2020; 12: 6852. doi: 10.18632/aging.103046. 10. Zeng Y, Luo Y, Wang L, Zhang K, Peng J, Fan G. Therapeutic Effect of Curcumin on Metabolic Diseases: Evidence from Clinical Studies. Int J Mol Sci 2023; 24: 3323. doi: 10.3390/ijms24043323. 11. Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M, et al. Molecular targets for the management of cancer using Curcuma longa Linn. phytoconstituents: A Review. Biomed Pharmacother 2021;135:111078. doi: 10.1016/j.biopha.2020.111078. 12. Ji JL, Huang XF, Zhu HL. Curcumin and its formulations: potential anti-cancer agents. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). Anticancer Agents Med Chem 2012;12:210-8. doi: 10.2174/187152012800228733. 13. Rashidy-Pour A, Bavarsad K, Miladi-Gorji H, Seraj Z, Vafaei AA. Voluntary exercise and estradiol reverse ovariectomy-induced spatial learning and memory deficits and reduction in hippocampal brain-derived neurotrophic factor in rats. Pharmacol Biochem Behav 2019; 187:172819. doi: 10.1016/j.pbb.2019.172819. 14. Swanson LW. Brain maps 4.0—Structure of the rat brain: An open access atlas with global nervous system nomenclature ontology and flatmaps. J Comp Neurol 2018; 526: 935-43. doi: 10.1002/cne.24381. 15. Vijayakurup V, hulasidasan AT, Shankar G M, Retnakumari AP, Nandan CD, Somaraj J, et al. Chitosan encapsulation enhances the bioavailability and tissue retention of curcumin and improves its efficacy in preventing B [a] P-induced lung carcinogenesis. Cancer Prev Res (Phila) 2019;12: 225-36. doi: 10.1158/1940-6207.CAPR-18-0437. 16. Al-Jarrah M, Al-Jarrah M, Matalka I, Al Aseri H, Mohtaseb A, Smirnova I.V, et al. Exercise training prevents endometrial hyperplasia and biomarkers for endometrial cancer in rat model of type 1 diabetes. J Clin Med Res 2010; 2: 207. doi: 10.4021/jocmr444e. 17. Maass A, Düzel S, Brigadski T, Goerke M, Becke A, Sobieray U, et al. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage 2016; 131:142-54. doi. 10.1016/j.neuroimage.2015.10.084. 18. Ieraci A, Mallei A, Musazzi L, Popoli M. Physical exercise and acute restraint stress differentially modulate hippocampal brain‐derived neurotrophic factor transcripts and epigenetic mechanisms in mice. Hippocampus 2015; 25: 1380-92. doi: 10.1002/hipo.22458. 19. Tajbakhsh A, Mokhtari‐Zaer A, Rezaee M, Afzaljavan F, Rivandi M, Hassanian SM, et al. Therapeutic potentials of BDNF/TrkB in breast cancer; current status and perspectives. J Cell Biochem 2017; 118: 2502-15. doi: 10.100/jc.25943. 20. Tanaka K, Okugawa Y, Toiyama Y, Inoue Y, Saigusa S, Kawamura M, et al. Brain-derived neurotrophic factor (BDNF)-induced tropomyosin-related kinase B (Trk B) signaling is a potential therapeutic target for peritoneal carcinomatosis arising from colorectal cancer. PloS one 2014; 9: e96410. doi: 10.1317/journal.pone.0096410. 21. Gallen CL, D’Esposito M. Brain modularity: a biomarker of intervention-related plasticity. Trends Cogn Sci 2019; 23: 293-304. doi: 10.1016/j.tics.2019.01.014. 22. Lou SJ, Liu JY, Chang H, Chen PJ. Hippocampal neurogenesis and gene expression depend on exercise intensity in juvenile rats. Brain Res 2008; 1210:48-55. doi: 10.1016/j. brainres.2008.02.080. 23. Zigmond MJ, Cameron JL, Hoffer BJ, Smeyne RJ. Neurorestoration by physical exercise: moving forward. Parkinsonism Relat Disord 2012;18 Suppl 1: S147-50. doi: 10.1016/S1353-8020(11)70046-3. 24. Ruscheweyh R, Willemer C, Krüger K, Duning T, Warnecke T, Sommer J, et al. Physical activity and memory functions: an interventional study. Neurobiol Aging 2011; 32: 1304-19. doi: 10.1016/j.neurobiolaging.2009.08.001. 25. Bettio LE, Thacker JS, Rodgers SP, Brocardo PS, Christie BR, Gil-Mohapel J. Interplay between hormones and exercise on hippocampal plasticity across the lifespan. Biochim Biophys Acta Mol Basis Dis 2020; 1866: 165821. doi: 10.1016/j.bbadis .2020.165821. 26. Nakhzari Khodakheir J, Haghighi AH, Hamedinia MR. The effects of combined exercise training with aerobic dominant and coenzyme q10 supplementation on serum BDNF and NGF levels in patients with Multiple Sclerosis. J Arak Univ Med Sci 2018; 21: 94-103. 27. Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 2011; 108: 3017-22. doi: 10.1073/pnas.1015950108. 28. Vakili J, Sari V. The effect of 8 weeks of circuit training on serum levels of nerve growth factor (NGF) and physical fitness factors in elderly women. JAHSSP 2022; 9: 72-82. doi: 10.22049/jahssp.2022.27654.1439. 29. De Vincenti AP, Ríos AS, Paratcha G, Ledda F. Mechanisms that modulate and diversify BDNF functions: implications for hippocampal synaptic plasticity. Front Cell Neurosci 2019; 13: 135. doi: 10.3389/fncel.2019.00135. 30. Maass A, Düzel S, Brigadski T, Goerke M, Becke A, Sobieray U, et al. Relationships of peripheral IGF-1, VEGF and BDNF levels to exercise-related changes in memory, hippocampal perfusion and volumes in older adults. Neuroimage 2016; 131: 142-54. doi: 10.1016/j.neuroimage.2015.10.084. 31. Nofuji Y, Suwa M, Sasaki H, Ichimiya A, Nishichi R, Kumagai S. Different circulating brain-derived neurotrophic factor responses to acute exercise between physically active and sedentary subjects. J Sports Sci Med 2012; 11: 83-88. 32. Ravasi AA, Pournemati P, Kordi MR, Hedayati M. The effects of resistance and endurance training on BDNF and cortisol levels in young male rats. J Sport Sci 2013;1: 49-78. doi: 10.22059/jsb.2013.30458. 33. Hosseinzadeh S. Effects of Curcumin supplementation on BDNF and Oxidative/antioxidative process in rat’s hippocampus which exposed to lead. J Gorgan Univ Med Sci 2011; 13: 1-8.doi: goums.ac.ir/journal/article-1-1058-en. 34. Shamsi-Goushki A, Mortazavi Z, Behrasi F, Ebrahimkhani A, Hosseini R. Effects of Curcumin and Nanocurcumin supplementation on serum brain-derived neurotrophic factor and some complications in type 2 diabetic rats. Nanomedicine J 2023; 10: 122-130. doi: 10.22038/NMJ.2023.69556.1742. 35. Osali A, Rostami A. Effect of 6 weeks of aerobic training with nanocurcumin consumption on IL1β, nitric oxide, and depression in women with metabolic syndrome. Int J Diabetes Develop Count 2023; 43:1-8. 36. Dikmen M. Comparison of the effects of curcumin and RG108 on NGF-induced PC-12 Adh cell differentiation and neurite outgrowth. J Med Food 2017; 20: 376-84. doi: 10.1089/jmf.2016. 3889. 37. Mavaddatiyan L, Khezri S, Abtahi Froushani SM. Effect of Curcumin on Cortisol, Catalase and Nerve Growth Factor Expression Level in Animal Model of Induced Multiple Sclerosis. J Gorgan Univ Med Sci 2022; 24: 10-8.
|