1. Zhou R, Wu J, Liu B, Jiang Y, Chen W, Li J, et al. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol Life Sci 2019;76:2681-95. doi: 10.1007/s00018-019-03101-9. 2. Al-Rashida M, Iqbal J. Inhibition of alkaline phosphatase: an emerging new drug target. Mini Rev Med Chem 2015;15:41-51. doi: 10.2174/1389557515666150219113205. 3. Štefková K, Procházková J, Pacherník J. Alkaline phosphatase in stem cells. Stem Cells Int 2015;2015:628368. doi: 10.1155/2015/628368. 4. Sato M, Saitoh I, Kiyokawa Y, Iwase Y, Kubota N, Ibano N, et al. Tissue-Nonspecific Alkaline Phosphatase, a Possible Mediator of Cell Maturation: Towards a New Paradigm. Cells 2021;10:3338. doi: 10.3390/cells10123338. 5. Pham HT, Ono M, Hara ES, Nguyen HTT, Dang AT, Do HT, et al. Tryptophan and kynurenine enhances the stemness and osteogenic differentiation of bone marrow-derived mesenchymal stromal cells in vitro and in vivo. Materials 2021;14:208. doi: 10.3390/ma14010208. 6. Azizi H, Koruji M, Skutella T. Comparison of PLZF gene expression between pluripotent stem cells and testicular germ cells. Cell (Yakhteh) 2020;22:60. doi: 10.22074/cellj.2020.6532. 7. Azizi H, Niazi Tabar A, Mohammadi A. Experimental investigation of Ki67, POU5F1, and ZBTB16 expression in the pig and mouse testicular cells using immunocytochemistry and RT-PCR. J Ilam Uni Med Sci 2020;28:1-10. doi: 10.29252/sjimu.28.5.1. 8. Wei BH, Hao SL, Yang WX. Regulation of spermatogonial stem cell self-renewal and proliferation in mammals. Histol Histopathol 2022:37: 825-38. doi: 10.14670/HH-18-461. 9. Fukuda K, Makino Y, Kaneko S, Shimura C, Okada Y, Ichiyanagi K, et al. Transcriptional states of retroelement-inserted regions and specific KRAB zinc finger protein association are correlated with DNA methylation of retroelements in human male germ cells. Elife 2022;11:e76822. doi:10.7554/eLife.76822. 10. Shen Z, Chen M, Gao Y, Dong F, Cen C, Wu H, et al. The function of Foxo1 in spermatogonia development is independent of PI3K/PTEN signaling. FASEB J 2022;36:e22522. doi: 10.1096/fj.202200640RR. 11. Xiao GQ, Li F, Unger PD, Katerji H, Yang Q, McMahon L, et al. ZBTB16: a novel sensitive and specific biomarker for yolk sac tumor. Mod Pathol 2016;29:591-8. doi: 10.1038/modpathol.2016.46. 12. Xiao GQ, Sherrod AE, Hurth KM. ZBTB16: A new biomarker for primitive neuroectodermal tumor element/Ewing sarcoma. Pathol Res Pract 2019;215:152536. doi: 10.1016/j.prp.2019.152536. 13. Damjanov I. Testicular Germ Cell Tumors: Serological and Immunohistochemical Diagnosis. Acta Med Acad 2021;50:58-70. doi: 10.5644/ama2006-124.326. 14. Azizi H, Asgari B, Skutella T. Pluripotency potential of embryonic stem cell-like cells derived from mouse testis. Cell J (Yakhteh) 2019;21:281. doi: 10.22074/cellj.2019.6068. 15. Zhou W, Shao H, Zhang D, Dong J, Cheng W, Wang L, et al. PTEN signaling is required for the maintenance of spermatogonial stem cells in mouse, by regulating the expressions of PLZF and UTF1. Cell Biosci 2015;5:1-10. doi: 10.1186/s13578-015-0034-x. 16. Cao D, Snir OL. Ovary-II Germ Cell Tumors and Sex Cord Tumors. Practical Gynecologic Pathology: Springer 2021:263-82. doi: 10.1007/978-3-030-68608-6_10. 17. Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 2004;36:653-9. doi: 10.1038/ng1367. 18. Hobbs RM, Fagoonee S, Papa A, Webster K, Altruda F, Nishinakamura R, et al. Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell 2012;10:284-98. doi: 10.1016/j.stem.2012.02.004. 19. Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res 2018;29:207-14. doi: 10.1016/j.scr.2018.04.009. 20. Azizi H, Hamidabadi HG, Skutella T. Differential proliferation effects after short-term cultivation of mouse spermatogonial stem cells on different feeder layers. Cell J (Yakhteh) 2019;21:186. doi: 10.22074/cellj.2019.5802. 21. Azizi H, Skutella T, Shahverdi A. Generation of mouse spermatogonial stem-cell-colonies in a non-adherent culture. Cell J (Yakhteh) 2017;19:238. doi: 10.22074/cellj.2016.4184. 22. Azizi H, Conrad S, Hinz U, Asgari B, Nanus D, Peterziel H, et al. Derivation of pluripotent cells from mouse SSCs seems to be age dependent. Stem Cells Int 2016;2016:8216312. doi: 10.1155/2016/8216312. 23. González F, Boué S, Belmonte JCI. Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 2011;12:231-42. doi: 10.1038/nrg2937. 24. O'Connor MD, Kardel MD, Iosfina I, Youssef D, Lu M, Li MM, et al. Alkaline phosphatase‐positive colony formation is a sensitive, specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells 2008;26:1109-16. doi: 10.1634/stemcells.2007-0801 25. Fukuda K, Makino Y, Kaneko S, Shimura C, Okada Y, Ichiyanagi K, et al. Potential role of KRAB-ZFP binding and transcriptional states on DNA methylation of retroelements in human male germ cells. Elife 2022;11:e76822. doi: 10.7554/eLife.76822. 26. Harchegani AB, Dahan H, Tahmasbpour E, Shahriary A. Effects of zinc deficiency on impaired spermatogenesis and male infertility: the role of oxidative stress, inflammation and apoptosis. Hum Fertil 2018:23:5-16. doi: 10.1080/14647273.2018.1494390. 27. Denny P, Ashworth A. A zinc finger protein-encoding gene expressed in the post-meiotic phase of spermatogenesis. Gene 1991;106:221-7. doi: 10.1016/0378-1119(91)90202-m. 28. Looman C, Mark C, Åbrink M, Hellman L. MZF6D, a novel KRAB zinc-finger gene expressed exclusively in meiotic male germ cells. DNA Cell Biol 2003;22:489-96. doi: 10.1089/10445490360708892. 29. Hosseini R, Marsh P, Pizzey J, Leonard L, Ruddy S, Bains S, et al. Restricted expression of a zinc finger protein in male germ cells. J Mol Endocrinol1994;13:157-65. doi: 10.1677/jme.0.0130157. 30. Zhang S, Qiu W, Wu H, Zhang G, Huang M, Xiao C, et al. The shorter zinc finger protein ZNF230 gene message is transcribed in fertile male testes and may be related to human spermatogenesis. Biochem J 2001;359:721-7. doi: 10.1042/0264-6021:3590721. 31. Kolesnichenko M, Vogt PK. Understanding PLZF: two transcriptional targets, REDD1 and smooth muscle α-actin, define new questions in growth control, senescence, self-renewal and tumor suppression. Cell Cycle 2011;10:771-5. doi: 10.4161/cc.10.5.14829.
|