[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 30, Issue 2 (6-2022) ::
Journal of Ilam University of Medical Sciences 2022, 30(2): 41-50 Back to browse issues page
Synergistic Effect of Silver Nanoparticles and Streptomycin Antibiotic on the MexX Gene Expression of Pump Efflux System in Drug-Resistant Pseudomonas aeruginosa Strains
Ali Mohammad1 , Farahnaz Molavi * 2, Samaneh Dolatabadi3
1- Dept of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran, Mashhad, Iran
2- Dept of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran , farahmolavi@gmail.com
3- Dept of Biology, Neyshbour Branch, Islamic Azad University, Neyshbour, Iran
Abstract:   (744 Views)
Introduction: Pseudomonas aeruginosa is one of the most important infectious agents in humans, which is difficult to control in hospitals due to its resistance to various antibiotics. Efflux pump systems play an important role in the drug resistance of this bacterium to a variety of antibiotics. This study aimed to determine the antimicrobial synergistic effect of silver nanoparticles and the antibiotic streptomycin on the MexX gene expression.
Material & Methods: In this cross-sectional descriptive study, 49 samples were collected from 11 medical diagnostic laboratories in Mashhad from 1398 to 1399. After the treatment of multidrug-resistant bacteria with inhibitors, the microdilution method and Real Time-PCR technique were used to determine the effective dilution of silver nanoparticles and probiotics on the expression of the MexX gene of the bacterium.
(Ethic code: IR.IAU.MSHD.REC.1400.018)
Findings: All 49 collected samples of Pseudomonas aeruginosa were identified. All strains had the MexX gene, and all were resistant to more than two antibiotics. The minimum inhibitory concentration (MIC) results and expression of the MexX gene showed that the MIC in the agar dilution method for silver nanoparticles was up to 500 μg/ml. Evaluation of the synergistic effect of silver nanoparticles with streptomycin antibiotic showed that plates containing streptomycin antibiotic disk with silver nanoparticles with the dilution of 250 μg/ml caused a growth inhibition zone according to the CLSI standard. Silver nanoparticles with streptomycin synergy had a greater effect in inhibiting bacterial growth, and this effect was greater than that of silver nanoparticles (P>0.05).
Discussion & Conclusion: Silver and streptomycin have inhibitory and antibacterial activity to reduce the function of the MexXY-OprM efflux pump in Pseudomonas aeruginosa (P>0.05).
 
Keywords: Iran, MexXY-OprM, Multidrug resistance, Nanomaterials, Pseudomonas
Full-Text [PDF 1266 kb]   (202 Downloads)    
Type of Study: Research | Subject: Bacteriology
Received: 2021/07/11 | Accepted: 2021/12/1 | Published: 2022/06/5
References
1. Grosjean M, Guenard S, Giraud C, Muller C, Plesiat P and Juarez P. Targeted genome reduction of Pseudomonas aeruginosa strain PAO1 Led to the development of hypovirulent and hypersusceptible rDNA hosts. Front Bioeng Biotechnol 2021; 9: 640-50. doi: 10.3389/fbioe.2021.640450 .
2. Grainha T, Jorge P, Alves D, Lopes SP, Pereira MO. Unraveling pseudomonas aeruginosa and Candida albicans communication in coinfection scenarios: insights through network analysis. Front Cell Infect Microbiolog 2020; 10: 550-9. doi: 10.3390/microorganisms9020412.
3. Behzadi P, Barath Z, Gajdacs M. It’s not easy being green: A narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa. Antibiotics 2021; 10: 42-53. doi: 10.3390/antibiotics10010042.
4. Broniewski JM, Chisnall MA, Høyland-Kroghsbo NM, Buckling A, Westra ER. The effect of Quorum sensing inhibitors on the evolution of CRISPR-based phage immunity in Pseudomonas aeruginosa. ISME J 2021; 10:1-9. doi: 10.1038/s41396-021-00946-6.
5. Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JA, Sommer LM, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 2021; 19: 331-42. 10. doi: 10.3390/antibiotics11030419.
6. Li R, Peng K, Xiao X, Liu Y, Peng D, Wang Z. Emergence of a multidrug resistance efflux pump with carbapenem resistance gene blaVIM-2 in a Pseudomonas putida megaplasmid of migratory bird origin. J Antimicrob Chemother. 2021; 76:1455-1458. doi: 10.1093/jac/dkab044.
7. Fabre L, Ntreh AT, Yazidi A, Leus IV, Weeks JW, Bhattacharyya S, et al. A "Drug Sweeping" State of the TriABC Triclosan Efflux Pump from Pseudomonas aeruginosa. Structure 2021; 29:261-274.e6. doi: 10.1016/j.str.2020.09.001.
8. Zahedani SS, Tahmasebi H, Jahantigh M. Coexistence of virulence factors and efflux pump genes in clinical isolates of Pseudomonas aeruginosa: Analysis of Biofilm-Forming strains from Iran. Int J Microbiol 2021; 5557361. doi: 10.1155/2021/5557361
9. Seupt A, Schniederjans M, Tomasch J, Häussler S. Expression of the MexXY aminoglycoside efflux pump and presence of an aminoglycoside-modifying enzyme in clinical Pseudomonas aeruginosa isolates are highly correlated. Antimicrob agent chemother 2020; 12: e01166-20. doi: 10.1128/AAC.01166-20.
10. Albadiri V, Molavi F, Tehranipoor M. The effect of silver nanoparticles on blaTEM gene expression in beta-lactamase-resistant samples in Escherichia coli. B J Microorganism. 2021; 39: 87-100. doi: 10.22108/BJM.2021.125907.1353.
11. Wang Y, Jiang Y, Deng Y, Yi C, Wang Y, Ding M, et al. Probiotic Supplements: Hope or Hype? Front Microbiol 2020; 11:160. doi: 10.3389/fmicb.2020.00160.
12. Quang HT, Van QN, and Anh-Tuan L.“Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives”. Adv Nat Sci: Nanosci Nanotechnol 2013; 4: 1-20. doi: 10.1080/21691401.2019.1620757.
13. Gaby W, Hadley CJJob. Practical laboratory test for the identification of Pseudomonas aeruginosa. J bacterial 1957; 74: 356-61. doi:10:1016/21691401.2019.1620757.
14. Annear D, Black J, Govender S. Multilocus sequence typing of carbapenem resistant Pseudomonas aeruginosa isolated from patients presenting at port Elizabeth hospitals, south Africa. Afr J Infect Dis 2017; 11: 68-74. doi: 10.21010/ajid.v11i2.9.
15. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 28th ed. CLSI supplement M100S. 2018. CLSI, PA. 38-40.
16. Tang Y, Li B, Dai J, Dai J, Wang X, Si J, et al. Genotyping of pseudomonas aeruginosa type III secretion system using magnetic enrichment multiplex polymerase chain reaction and chemiluminescence. J Biomed Nanotechnol 2016; 12: 762-9. doi: 10.1166/jbn.2016.2222.
17. Heera R, Sivachandran P, Chinni SV, Mason J, Croft L, Ravichandran M, et al. Efficient extraction of small and large RNAs in bacteria for excellent total RNA sequencing and comprehensive transcriptome analysis. BMC Res Notes 2015; 8: 754-66. doi: 10.1186/s13104-015-1726-3.
18. Cavallo JD, Fabre R, Leblanc F, NicolasChanoine MH, Thabaut A. Antibiotic susceptibility and mechanisms of betalactam resistance in 1310 strains of pseudomonas aeruginosa: a French multicentre study (1996). J Antimicrob Chemother 2000; 46: 133-6. doi: 10.1093/jac/46.1.133.
19. Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JA, Sommer LM, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microb 2021; 19: 331-42. doi: 10.1038/s41579-020-00477-5.
20. Moyne O, Castelli F, Bicout DJ, Boccard J, Camara B, Cournoyer B, et al. Metabotypes of Pseudomonas aeruginosa Correlate with Antibiotic Resistance, Virulence and Clinical Outcome in Cystic Fibrosis Chronic Infections. Metabolites 2021; 11: 63-72.
21. Shander RM. Anil C Antimicrobial Suseptibility Patterns of pseudomonas aeroginosa clinical isolates at tertiary care hospital in kathmando, nepal. Asian J Pharm Clin Res 2013; 6: 235-8. doi: 10:3390/s41579-020-00477-5.
22. Rossi E, La Rosa R, Bartell JA, Marvig RL, Haagensen JA, Sommer LM, et al. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microb 2021; 19: 331-42. doi: 10.1038/s41579-020-00477-5.
23. Lambert PA. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J Roy Soc Med 2002; 95(Suppl 41): 22-6. doi: 10.4103/joacp. JOACP_349_15.
24. Tahmasebi H, Dehbashi S, Arabestani MR. Antibiotic resistance alters through iron-regulating Sigma factors during the interaction of Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2021; 11: 1-3. doi: 10.1038/s41598-021-98017-5.
25. Pogue JM, Kaye KS, Veve MP, Patel TS, Gerlach AT, Davis SL, et al. Ceftolozane/tazobactam vs polymyxin or aminoglycoside-based regimens for the treatment of drug-resistant Pseudomonas aeruginosa. Clin Infec Dis 2020; 71: 304-10. doi:10:1093.
26. Kato K, Iwai S, Kumasaka K, Horikoshi A, Inada S, Inamatsu T, et al. Survey of antibiotic resistance in Pseudomonas aeruginosa by The Tokyo Johoku association of Pseudomonas studies. J Infect Chemother 2001; 7: 258-62. doi: 10.29252/ijmr-040202.
27. Huang Y, Bai L, Yang Y, Yin Z, Guo B. Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. J Colloid Interface S 2021; doi: 10.1016/j.jcis.2021.10.131.
28. Ulagesan S, Nam TJ, Choi YH. Biogenic preparation and characterization of Pyropia yezoensis silver nanoparticles (Py AgNPs) and their antibacterial activity against Pseudomonas aeruginosa. Bioprocess Biosys Eng 2021; 44: 443-52. doi: 10.1007/s00449-020-02454-x.
29. de Lacerda Coriolano D, de Souza JB, Bueno EV, Medeiros SM, Cavalcanti ID, Cavalcanti IM. Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Braz J Microbiol 2021; 52: 267-78. doi: 10.1007/s42770-020-00406-x.
30. Saeki EK, Yamada AY, de Araujo LA, Anversa L, de Oliveira Garcia D, Barros De Souza RL, et al. Subinhibitory concentrations of biogenic silver nanoparticles affect motility and biofilm formation in Pseudomonas aeruginosa. Front Cell Infec Microbiol 2021; 11: 253-69. doi: 10.3389/fcimb. 2021.656984.
31. Minh Dat N, Linh VN, Huy LA, Huong NT, Tu TH, Phuong NT, et al. Fabrication and antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus of silver nanoparticle decorated reduced graphene oxide nanocomposites. Mater Technol 2019; 34: 369-75. doi: 10.3390/ pr9040589.
32. Al Dahmash ND, Al-Ansari MM, Al-Otibi FO, Singh AR. Frankincense, an aromatic medicinal exudate of Boswellia carterii used to mediate silver nanoparticle synthesis: Evaluation of bacterial molecular inhibition and its pathway. J Drug Deli Sci Technol 2021; 61:102337. doi: 10.1016/j.jddst. 2021.102337.
33. Feizi S, Cooksley CM, Bouras GS, Prestidge CA, Coenye T, Psaltis AJ, et al. Colloidal silver combating pathogenic Pseudomonas aeruginosa and MRSA in chronic rhinosinusitis. Colloids Surf B Biointerfaces 2021; 202:111675. doi: 10.1016/j.colsurfb.2021.111675.
34. Haney, Carl. Effects on Iron nanoparticles on Pseudomonas Aeruginosa Biofilms. 2011. University of Dayton, Master's thesis. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=dayton1324058048.
35. Bee SL, Bustami Y, Ul-Hamid A, Lim K, Abdul Hamid ZA. Synthesis of silver nanoparticle-decorated hydroxyapatite nanocomposite with combined bioactivity and antibacterial properties. J Mater Sci Mater Med 2021; 32: 1-2. doi: 10.1007/s10856-021-06590-y.
36. Saravanakumar K, Sriram B, Sathiyaseelan A, Mariadoss AV, Hu X, Han KS, et al. Synthesis, characterization, and cytotoxicity of starch-encapsulated biogenic silver nanoparticle and its improved anti-bacterial activity. Int J biol macromol 2021; 182:1409-18. doi: 10.3390/ma15072388 .
37. Rashid A, Molavi F, Mahmoudzadeh H. The effect of silver nanoparticles on mecA gene expression in methicillin-resistant samples of Staphylococcus aureus. NCMBJ 2020; 11: 67-82. doi: 20.1001.1.22285458.1399.11.41.6.0.
38. Fayaz K, Balaji M, Girilal, et al. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6: 103-9. doi: 10.2217/nnm.15.128.
39. Banoee S, Seif Ze, Nazari, et al. J Biomed Mater Res Part B: Applied Biomaterials 2010; 93; 557-61. doi: 10.1002/jbm.b.31615.
40. Kon K, Rai M. Interactions Between Plant-produced Nanoparticles and Antibiotics as a Way of Coping with Bacterial Resistance. Green Biosynthesis of Nanoparticles: Mechanisms and Applications. 2013:180.
41. Tenover FC. Mechanisms of antimicrobial resistance in bacteria. American J med 2006;119: S3-10. doi: 10.1016/j.amjmed.2006.03.011.
42. Doi Y, Arakawa Y. S ribosomal RNA methylation: emerging resistance mechanism against amino-glycosides. Clin Infec Dis 2007; 45:88-94. doi: 10.1086/518605.
43. Sharif R, Amini K. Effect of Iron Oxide nanoparticles and probiotic Bifidobacterium bifidum on MexA Gene Expression in Drug Resistant Isolates of Pseudomonas aeruginosa. Res Med. 2019; 43: 118-123(persian).
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.IAU.MSHD.REC.1400.018



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammad A, Molavi F, Dolatabadi S. Synergistic Effect of Silver Nanoparticles and Streptomycin Antibiotic on the MexX Gene Expression of Pump Efflux System in Drug-Resistant Pseudomonas aeruginosa Strains. sjimu 2022; 30 (2) :41-50
URL: http://sjimu.medilam.ac.ir/article-1-7174-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 30, Issue 2 (6-2022) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.16 seconds with 31 queries by YEKTAWEB 4514