1. Williams KL. Endotoxin relevance and control overview. Endotoxins: CRC Press; 2007. p. 47-66. 2. Williams KL. Endotoxins: pyrogens, LAL testing and depyrogenation: CRC Press; 2007. 3. Wang X, Quinn PJ. Endotoxins: structure, function and recognition. Springer Science & Business Media; 2010. 4. Hirayama C, Sakata M. Chromatographic removal of endotoxin from protein solutions by polymer particles. J Chromatogr B Analyt Technol Biomed Life Sci 2002;781:419-32. doi: 10.1016/s1570-0232(02)00430-0. 5. Ongkudon CM, Chew JH, Liu B, Danquah MK. Chromatographic removal of endotoxins: A bioprocess engineer's perspective. ISRN Chromatogr 2012;2012. doi:10.5402/2012/649746. 6. Sepahi M, Hadadian S, Ahangari Cohan R, Norouzian D. Lipopolysaccharide removal affinity matrices based on novel cationic amphiphilic peptides. Prep Biochem Biotechnol 2021;51:386-94. doi: 10.1080/10826068.2020.1821216. 7. Sepahi M, Norouzian D, Cohan RA, Hadadian S. Optimization of the Endotoxin Removal Performance of Solid-Phase Conjugated S3E3 Antimicrobial Peptide Using Response Surface Methodology. Int J Pept Res Ther 2021;27:2029-37. doi:10.1007/s10989-021-10230-y. 8. Ding JL, Ho B, Tan NS, inventors; Google Patents, assignee. Recombinant proteins and peptides for endotoxin biosensors, endotoxin removal, and anti-microbial and anti-endotoxin therapeutics patent US7297551 B2. 2004. 9. High D. Endotoxin Removal from DNA using EndoBind-R™. 2007. 10. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein Identification and Analysis Tools on the Expasy Server, The Proteomics Protocols Handbook. Totowa, New Jersey: Springer; 2005. pp. 571-607. 11. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 2015:gkv1051. doi: 10.1093/nar/gkv1051. 12. Chaudhary K, Kumar R, Singh S, Tuknait A, Gautam A, Mathur D, et al. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides. Sci Rep 2016;6:22843. doi: 10.1038/srep22843. 13. Sepahi M, Ahangari Cohan R, Hadadian S, Norouzian D. Effect of glutamic acid elimination/substitution on the biological activities of S3 cationic amphiphilic peptides. Prep Biochem Biotechnol 2020;50:664-72. doi:10.1080/10826068.2020.1725772. 14. Tan NS, Ng MLP, Yau YH, Chong PKW, Ho B, Ding JL. Definition of endotoxin binding sites in horseshoe crab factor C recombinant sushi proteins and neutralization of endotoxin by sushi peptides. FASEB J 2000;14:1801-13. doi:10.1096/fj.99-0866com. 15. Aurell CA, Wistrom AO. Critical aggregation concentrations of gram-negative bacterial lipopolysaccharides (LPS). Biochem Biophys Res Commun 1998;253:119-23. doi: 10.1006/bbrc.1998.9773. 16. Bergstrand A, Svanberg C, Langton M, Nydén M. Aggregation behavior and size of lipopolysaccharide from Escherichia coli O55: B5. Colloids Surf B Biointerfaces 2006;53:9-14. doi: 10.1016/j.colsurfb.2006.06.007. 17. Taylor FB, Botts J. Purification and characterization of streptokinase with studies of streptokinase activation of plasminogen. Biochem 1968;7:232-42. doi:10.1021/bi00841a028. 18. Khan HU. The role of Ion Exchange Chromatography in purification and characterization of molecules. Ion Exchange Technologies 2012:331-42. doi:10.5772/52537. 19. Kisley L, Chen J, Mansur AP, Dominguez-Medina S, Kulla E, Kang MK, et al. High ionic strength narrows the population of sites participating in protein ion-exchange adsorption: A single-molecule study. J Chromatogr A 2014;1343:135-42. doi:10.1016/j.chroma.2014.03.075. 20. Pál T, Sonnevend Á, Galadari S, Conlon JM. Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin-2. Regul Pept 2005;129:85-91. doi: 10.1016/j.regpep.2005.01.015. 21. Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 2001;501:146-50. doi: 10.1016/S0014-5793(01)02648-5. 22. Lyu Y, Yang Y, Lyu X, Dong N, Shan A. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci Rep 2016;6:27258. doi:10.1038/srep27258. 23. Yin LM, Edwards MA, Li J, Yip CM, Deber CM. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem 2012;287:7738-45. doi:10.1074/jbc.M111.303602. 24. Shang D, Li X, Sun Y, Wang C, Sun L, Wei S, et al. Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, temporin-1CEb from Chinese brown frog, Rana chensinensis. Chem Biol Drug Des 2012;79:653-62. doi:10.1111/j.1747-0285.2012.01363.x. 25. Eckert R, Qi F, Yarbrough DK, He J, Anderson MH, Shi W. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother 2006;50:1480-8. doi:10.1128/AAC.50.4.1480-1488.2006. 26. Borah A, Deb B, Chakraborty S. A Crosstalk on Antimicrobial Peptides. Int J Pept Res Ther 2020;27:1-16. doi:10.1007/s10989-020-10075-x. 27. Kang Y, Luo RG. Effects of ionic strength and pH on endotoxin removal efficiency and protein recovery in an affinity chromatography. Process Biochem 2000;36:85-92. doi:10.1016/S0032-9592(00)00182-5. 28. Li J, Shang G, You M, Peng S, Wang Z, Wu H, et al. Endotoxin removing method based on lipopolysaccharide binding protein and polyhydroxyalkanoate binding protein PhaP. Biomacromolecules 2011;12:602-8. doi:10.1021/bm101230n. 29. Seyfi R, Kahaki FA, Ebrahimi T, Montazersaheb S, Eyvazi S, Babaeipour V, et al. Antimicrobial peptides (AMPs): roles, functions and mechanism of action. Int J Pept Res Ther 2020;26:1451-63. doi:10.1007/s10989-019-09946-9. 30. Gong H, Hu X, Zhang L, Fa K, Liao M, Liu H, et al. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? J Colloid Interface Sci 2023;637:182-92. doi:10.1016/j.jcis.2023.01.051. 31. Necula G, Bacalum M, Radu M. Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane—A Molecular Simulation Approach. Int J Mol Sci 2023;24:2005. doi:10.3390/ijms24032005. 32. He S, Deber CM. Interaction of designed cationic antimicrobial peptides with the outer membrane of gram-negative bacteria. Sci Rep 2024;14:1894. doi:10.1038/s41598-024-51716-1 2024;14:1894. 33. Yau YH, Ho B, Tan NS, Ng ML, Ding JL. High therapeutic index of factor C Sushi peptides: potent antimicrobials against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2001;45:2820-5. doi:10.1128/AAC.45.10.2820-2825.2001. 34. Hao G, Shi YH, Tang YL, Le GW. The membrane action mechanism of analogs of the antimicrobial peptide Buforin 2. Peptides 2009;30:1421-7. doi:10.1016/j.peptides.2009.05.016. 35. Ding JL, Zhu Y, Ho B. High-performance affinity capture-removal of bacterial pyrogen from solutions. J Chromatogr B Biomed Appl 2001;759:237-46. doi:10.1016/S0378-4347(01)00227-4.
|