[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations68704104
h-index2822
i10-index20699

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 32, Issue 4 (9-2024) ::
Journal of Ilam University of Medical Sciences 2024, 32(4): 27-41 Back to browse issues page
Evaluation of the performance of affinity matrix produced from improved variants of S3 peptide to remove endotoxin from Active pharmaceutical ingredient of streptokinase and comparison with commercial matrices
Shahin Hadadian * 1, Mina Sepahi2 , Reza Ahangari cohan2
1- Dept of Nanobiotechnology, Group of New Technologies, Pasteur Institute of Iran, Tehran, Iran , hadadian@yahoo.com
2- Dept of Nanobiotechnology, Group of New Technologies, Pasteur Institute of Iran, Tehran, Iran
Abstract:   (253 Views)
Introduction:  Endotoxin or lipopolysaccharide (LPS) is one of the components of the wall of gram-negative bacteria, which, when in contact with blood, stimulates the immune system and causes fever and even serious adverse effects or death. Removing endotoxin is one of the most daunting challenges presented to the purification process in the production of recombinant biological drugs. Bacterial endotoxin (LPS) is resistant to heat and passes through sterilizing filters, and due to its dangerous side effects in living organisms, part of the target protein purification process is always related to removing this disturbing factor from the product.
Materials & Methods: The affinity matrix S3E3-S-Sepharose, which was produced by immobilizing the improved variant of antimicrobial peptide S3 called S3E3 peptide on Sepharose chromatography resin, was used to remove endotoxin from active pharmaceutical ingredient (API) of streptokinase, and the performance of this matrix was compared with the performance of a disposable commercial matrix (containing S3 peptide as its ligand) and with ion exchange chromatography resin.
Results: The statistical analysis of the results revealed that compared to commercial S3 matrices and ion exchange chromatography, the S3E3-S-Sepharose matrix had higher protein recovery (84.07% compared to 81.50 and 75.31%, respectively) and higher streptokinase biological activity recovery (81.95% vs. 27 76.76 and 61.54%, respectively).
Conclusion: As evidenced by the obtained results, the S3E3-S-Sepharose matrix seems to be a suitable candidate for use in the purification processes of Streptokinase API and other recombinant biopharmaceuticals.
Keywords: Active pharmaceutical ingredient of Streptokinase, Anti-microbial S3, Endotoxin removal, Improved variants of S3
Full-Text [PDF 1135 kb]   (127 Downloads)    
Type of Study: Research | Subject: biotechnolohgy
Received: 2024/01/21 | Accepted: 2024/05/28 | Published: 2024/09/22
References
1. Williams KL. Endotoxin relevance and control overview. Endotoxins: CRC Press; 2007. p. 47-66.
2. Williams KL. Endotoxins: pyrogens, LAL testing and depyrogenation: CRC Press; 2007.
3. Wang X, Quinn PJ. Endotoxins: structure, function and recognition. Springer Science & Business Media; 2010.
4. Hirayama C, Sakata M. Chromatographic removal of endotoxin from protein solutions by polymer particles. J Chromatogr B Analyt Technol Biomed Life Sci 2002;781:419-32. doi: 10.1016/s1570-0232(02)00430-0.
5. Ongkudon CM, Chew JH, Liu B, Danquah MK. Chromatographic removal of endotoxins: A bioprocess engineer's perspective. ISRN Chromatogr 2012;2012. doi:10.5402/2012/649746.
6. Sepahi M, Hadadian S, Ahangari Cohan R, Norouzian D. Lipopolysaccharide removal affinity matrices based on novel cationic amphiphilic peptides. Prep Biochem Biotechnol 2021;51:386-94. doi: 10.1080/10826068.2020.1821216.
7. Sepahi M, Norouzian D, Cohan RA, Hadadian S. Optimization of the Endotoxin Removal Performance of Solid-Phase Conjugated S3E3 Antimicrobial Peptide Using Response Surface Methodology. Int J Pept Res Ther 2021;27:2029-37. doi:10.1007/s10989-021-10230-y.
8. Ding JL, Ho B, Tan NS, inventors; Google Patents, assignee. Recombinant proteins and peptides for endotoxin biosensors, endotoxin removal, and anti-microbial and anti-endotoxin therapeutics patent US7297551 B2. 2004.
9. High D. Endotoxin Removal from DNA using EndoBind-R™. 2007.
10. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein Identification and Analysis Tools on the Expasy Server, The Proteomics Protocols Handbook. Totowa, New Jersey: Springer; 2005. pp. 571-607.
11. Waghu FH, Barai RS, Gurung P, Idicula-Thomas S. CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 2015:gkv1051. doi: 10.1093/nar/gkv1051.
12. Chaudhary K, Kumar R, Singh S, Tuknait A, Gautam A, Mathur D, et al. A Web Server and Mobile App for Computing Hemolytic Potency of Peptides. Sci Rep 2016;6:22843. doi: 10.1038/srep22843.
13. Sepahi M, Ahangari Cohan R, Hadadian S, Norouzian D. Effect of glutamic acid elimination/substitution on the biological activities of S3 cationic amphiphilic peptides. Prep Biochem Biotechnol 2020;50:664-72. doi:10.1080/10826068.2020.1725772.
14. Tan NS, Ng MLP, Yau YH, Chong PKW, Ho B, Ding JL. Definition of endotoxin binding sites in horseshoe crab factor C recombinant sushi proteins and neutralization of endotoxin by sushi peptides. FASEB J 2000;14:1801-13. doi:10.1096/fj.99-0866com.
15. Aurell CA, Wistrom AO. Critical aggregation concentrations of gram-negative bacterial lipopolysaccharides (LPS). Biochem Biophys Res Commun 1998;253:119-23. doi: 10.1006/bbrc.1998.9773.
16. Bergstrand A, Svanberg C, Langton M, Nydén M. Aggregation behavior and size of lipopolysaccharide from Escherichia coli O55: B5. Colloids Surf B Biointerfaces 2006;53:9-14. doi: 10.1016/j.colsurfb.2006.06.007.
17. Taylor FB, Botts J. Purification and characterization of streptokinase with studies of streptokinase activation of plasminogen. Biochem 1968;7:232-42. doi:10.1021/bi00841a028.
18. Khan HU. The role of Ion Exchange Chromatography in purification and characterization of molecules. Ion Exchange Technologies 2012:331-42. doi:10.5772/52537.
19. Kisley L, Chen J, Mansur AP, Dominguez-Medina S, Kulla E, Kang MK, et al. High ionic strength narrows the population of sites participating in protein ion-exchange adsorption: A single-molecule study. J Chromatogr A 2014;1343:135-42. doi:10.1016/j.chroma.2014.03.075.
20. Pál T, Sonnevend Á, Galadari S, Conlon JM. Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, pseudin-2. Regul Pept 2005;129:85-91. doi: 10.1016/j.regpep.2005.01.015.
21. Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 2001;501:146-50. doi: 10.1016/S0014-5793(01)02648-5.
22. Lyu Y, Yang Y, Lyu X, Dong N, Shan A. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci Rep 2016;6:27258. doi:10.1038/srep27258.
23. Yin LM, Edwards MA, Li J, Yip CM, Deber CM. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem 2012;287:7738-45. doi:10.1074/jbc.M111.303602.
24. Shang D, Li X, Sun Y, Wang C, Sun L, Wei S, et al. Design of potent, non-toxic antimicrobial agents based upon the structure of the frog skin peptide, temporin-1CEb from Chinese brown frog, Rana chensinensis. Chem Biol Drug Des 2012;79:653-62. doi:10.1111/j.1747-0285.2012.01363.x.
25. Eckert R, Qi F, Yarbrough DK, He J, Anderson MH, Shi W. Adding selectivity to antimicrobial peptides: rational design of a multidomain peptide against Pseudomonas spp. Antimicrob Agents Chemother 2006;50:1480-8. doi:10.1128/AAC.50.4.1480-1488.2006.
26. Borah A, Deb B, Chakraborty S. A Crosstalk on Antimicrobial Peptides. Int J Pept Res Ther 2020;27:1-16. doi:10.1007/s10989-020-10075-x.
27. Kang Y, Luo RG. Effects of ionic strength and pH on endotoxin removal efficiency and protein recovery in an affinity chromatography. Process Biochem 2000;36:85-92. doi:10.1016/S0032-9592(00)00182-5.
28. Li J, Shang G, You M, Peng S, Wang Z, Wu H, et al. Endotoxin removing method based on lipopolysaccharide binding protein and polyhydroxyalkanoate binding protein PhaP. Biomacromolecules 2011;12:602-8. doi:10.1021/bm101230n.
29. Seyfi R, Kahaki FA, Ebrahimi T, Montazersaheb S, Eyvazi S, Babaeipour V, et al. Antimicrobial peptides (AMPs): roles, functions and mechanism of action. Int J Pept Res Ther 2020;26:1451-63. doi:10.1007/s10989-019-09946-9.
30. Gong H, Hu X, Zhang L, Fa K, Liao M, Liu H, et al. How do antimicrobial peptides disrupt the lipopolysaccharide membrane leaflet of Gram-negative bacteria? J Colloid Interface Sci 2023;637:182-92. doi:10.1016/j.jcis.2023.01.051.
31. Necula G, Bacalum M, Radu M. Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane—A Molecular Simulation Approach. Int J Mol Sci 2023;24:2005. doi:10.3390/ijms24032005.
32. He S, Deber CM. Interaction of designed cationic antimicrobial peptides with the outer membrane of gram-negative bacteria. Sci Rep 2024;14:1894. doi:10.1038/s41598-024-51716-1 2024;14:1894.
33. Yau YH, Ho B, Tan NS, Ng ML, Ding JL. High therapeutic index of factor C Sushi peptides: potent antimicrobials against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2001;45:2820-5. doi:10.1128/AAC.45.10.2820-2825.2001.
34. Hao G, Shi YH, Tang YL, Le GW. The membrane action mechanism of analogs of the antimicrobial peptide Buforin 2. Peptides 2009;30:1421-7. doi:10.1016/j.peptides.2009.05.016.
35. Ding JL, Zhu Y, Ho B. High-performance affinity capture-removal of bacterial pyrogen from solutions. J Chromatogr B Biomed Appl 2001;759:237-46. doi:10.1016/S0378-4347(01)00227-4.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: فاقد کارآزمایی بالینی است


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hadadian S, Sepahi M, Ahangari cohan R. Evaluation of the performance of affinity matrix produced from improved variants of S3 peptide to remove endotoxin from Active pharmaceutical ingredient of streptokinase and comparison with commercial matrices. J. Ilam Uni. Med. Sci. 2024; 32 (4) :27-41
URL: http://sjimu.medilam.ac.ir/article-1-8214-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 32, Issue 4 (9-2024) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.15 seconds with 41 queries by YEKTAWEB 4671