[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations68044041
h-index2721
i10-index20498

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 32, Issue 4 (9-2024) ::
Journal of Ilam University of Medical Sciences 2024, 32(4): 66-86 Back to browse issues page
Predicting Binding Affinity of Some Imatinib Derivatives as BCR-ABL Tyrosine Kinase Inhibitors Based on Monte Carlo Optimization
Shahram Lotfi1 , Shahin Ahmadi * 2, Sharare Vardast Baghmisheh3 , Ali Almasirad4
1- Dept of Chemistry, Payame Noor University (PNU), Tehran, Iran
2- Dept of Pure and Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran medical sciences, Islamic Azad University, Tehran, Iran , ahmadi.chemometrics@gmail.com
3- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
4- Dept of Pure and Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran medical sciences, Islamic Azad University, Tehran, Iran
Abstract:   (156 Views)
Introduction:  The Imatinib drug is used to treat blood cancer by inhibiting the BCR-ABL tyrosine kinase enzyme, which prevents the proliferation of cancer cells.
Materials & Methods: In order to predict the binding affinity of 555 compounds of imatinib derivatives as ABL-BCR tyrosine kinase inhibitors, quantitative structure-activity relationship (QSAR) modeling was performed using the Monte Carlo method. The data were randomly divided into four series, including training, invisible training, calibration, and validation sets, as well as they were randomly repeated three times.
Results: The results of three random divisions indicated reliable models for predicting the set of external tests with correlation coefficient (R2) and cross-validation correlation coefficient (Q2) in the range of 0.8575-0.8775 and 0.7620-0.7793. Consequently, the obtained models help identify hybrid descriptors for increasing or decreasing binding affinity (Ki) as BCR-ABL tyrosine kinase inhibitors. The mechanical interpretation of the model is given in the form of a report of descriptors that decrease and increase pKi, as well as examples of these descriptors.
Conclusion: The results reveal that the designed models can be considerably effective in estimating the biological effect of imatinib derivatives proposed by researchers and medicinal chemists. Therefore, it is possible to predict its possible biological effects by spending less time and money before conducting in vitro or in vivo experiments.
Keywords: Quantitative structure-activity relationship (QSAR), Chronic myeloid leukemia, Imatinib derivatives, Tyrosine kinase inhibitor, Binding affinity
Full-Text [PDF 2180 kb]   (101 Downloads)    
Type of Study: Research | Subject: ststistrcs and mathematics
Received: 2023/12/28 | Accepted: 2024/05/19 | Published: 2024/09/22
References
1. Goudzal A, El Aissouq A, El Hamdani H, Ouammou A. QSAR modeling, molecular docking studies and ADMET prediction on a series of phenylaminopyrimidine-(thio) urea derivatives as CK2 inhibitors. Mater Today 2022;51:1851-62. doi: 10.1016/j.matpr.2020.08.044.
2. Yang M, Xi Q, Jia W, Wang X. Structure-based analysis and biological characterization of imatinib derivatives reveal insights towards the inhibition of wild-type BCR-ABL and its mutants. Bioorg Med Chem Lett 2019;29:126758. doi:10.1016/j.bmcl.2019.126758.
3. Oliveira A, Moura S, Pimentel L, Neto J, Dantas R, Silva-Jr F, et al. New imatinib derivatives with antiproliferative activity against A549 and K562 cancer cells. Molecules 2022;27:750. doi: 10.3390/molecules27030750.
4. An X, Tiwari AK, Sun Y, Ding P-R, Ashby Jr CR, Chen Z-S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res 2010;34:1255-68. doi:10.1016/j.leukres.2010.04.016.
5. Luo H, Quan H, Xie C, Xu Y, Fu L, Lou L. HH-GV-678, a novel selective inhibitor of Bcr-Abl, outperforms imatinib and effectively overrides imatinib resistance. Leukemia 2010;24:1807-9. doi:10.1038/leu.2010.169.
6. Hamzehali H, Lotfi S, Ahmadi S, Kumar P. Quantitative structure–activity relationship modeling for predication of inhibition potencies of imatinib derivatives using SMILES attributes. Sci Rep 2022;12;21708. doi:10.1038/s41598-022-26279-8.
7. Kumar P, Kumar A, Singh D. CORAL: Development of a hybrid descriptor based QSTR model to predict the toxicity of dioxins and dioxin-like compounds with correlation intensity index and consensus modelling. Environ Toxicol Pharmacol 2022; 93:103893. doi: 10.1016/j.etap.2022.103893.
8. Toropova A, Toropov A, Viganò E, Colombo E, Roncaglioni A, Benfenati E. Carcinogenicity prediction using the index of ideality of correlation. SAR QSAR Environ Res 2022;33;419-28. doi:10.1080/1062936X.2022.2076736.
9. Toropova AP, Toropov AA, Roncaglioni A, Benfenati E. The index of ideality of correlation improves the predictive potential of models of the antioxidant activity of tripeptides from frog skin (Litoria rubella). Comput Biol Med 2021;133;104370. doi:10.1016/j.compbiomed.2021.104370.
10. Kyaw Zin PP, Borrel A, Fourches D. Benchmarking 2D/3D/MD-QSAR Models for Imatinib Derivatives: How Far Can We Predict? J Chem Inf Modl 2020; 60:3342-60. doi:10.1021/acs.jcim.0c00200.
11. Lotfi S, Ahmadi S, Kumar P. A hybrid descriptor based QSPR model to predict the thermal decomposition temperature of imidazolium ionic liquids using Monte Carlo approach. J Mol Liq 2021;338:116465. doi:10.1016/j.molliq.2021.116465.
12. Duhan M, Sindhu J, Kumar P, Devi M, Singh R, Kumar R, et al. Quantitative structure activity relationship studies of novel hydrazone derivatives as α-amylase inhibitors with index of ideality of correlation. J Biomol Struct Dyn 2022;40: 4933-53. doi:10.1080/07391102.2020.1863861.
13. Achary P, Toropova A, Toropov A. Combinations of graph invariants and attributes of simplified molecular input-line entry system (SMILES) to build up models for sweetness. Food Res Int 2019;122:40-6. doi:10.1016/j.foodres.2019.03.067.
14. Ahmadi S, Azimi N. Quasi-SMILES-Based QSPR/QSAR Modeling. QSPR/QSAR Analysis Using SMILES and Quasi-SMILES: Springer; 2023. p. 191-210. doi:10.1007/978-3-031-28401-4_8.
15. Ahmadi S. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria. Chemosphere 2020;242:125192. doi:10.1016/j.chemosphere.2019.125192.
16. Das NR, Sharma T, Mallick A, Toropova AP, Toropov AA, Achary P. Computational Approach in Designing and Development of Novel Inhibitors of AKR1C1. Ambient Intelligence in Health Care: Springer; 2023. p. 325-37. doi:10.1007/978-981-19-6068-0_32.
17. Ghaedi A. Predicting the cytotoxicity of ionic liquids using QSAR model based on SMILES optimal descriptors. J Mol Liq 2015;208:269-79. doi: 10.1016/j.molliq.2015.04.049.
18. Singh R, Kumar P, Devi M, Lal S, Kumar A, Sindhu J, et al. Monte Carlo based QSGFEAR: prediction of Gibb's free energy of activation at different temperatures using SMILES based descriptors. New J Chem 2022;46:19062-72. doi:10.1039/D2NJ03515D.
19. Ahmadi S, Lotfi S, Kumar P. Quantitative structure–toxicity relationship models for predication of toxicity of ionic liquids toward leukemia rat cell line IPC-81 based on index of ideality of correlation. Toxicol Mech Methods 2022; 32:302-12. doi:10.1080/15376516.2021.2000686.
20. Lotfi S, Ahmadi S, Kumar P. The Monte Carlo approach to model and predict the melting point of imidazolium ionic liquids using hybrid optimal descriptors. RSC Adv 2021;11:33849-57. doi: 10.1039/D1RA06861J.
21. Ahmadi S, Ketabi S, Qomi M. CO2 uptake prediction of metal–organic frameworks using quasi-SMILES and Monte Carlo optimization. New J Chem 2022;46:8827-37. doi:10.1039/D2NJ00596D.
22. Kumar P, Kumar A. CORAL: QSAR models of CB1 cannabinoid receptor inhibitors based on local and global SMILES attributes with the index of ideality of correlation and the correlation contradiction index. Chemo Intell Lab Syst 2020;200:103982. doi: 10.1016/j.chemolab.2020.103982.
23. Shayanfar A, Shayanfar S. Is regression through origin useful in external validation of QSAR models? Eur J Phar Sci 2014;59:31-5. doi:10.1016/j.ejps.2014.03.007.
24. Consonni V, Ballabio D, Todeschini R. Comments on the definition of the Q 2 parameter for QSAR validation. J Chem Inf Model 2009;49:1669-78. doi: 10.1021/ci900115y.
25. Roy K, Kar S. The rm2 metrics and regression through origin approach: Reliable and useful validation tools for predictive QSAR models (Commentary on ‘Is regression through origin useful in external validation of QSAR models?’). Eur J Pharm Sci 2014;62:111-4. doi:10.1016/j.ejps.2014.05.019.
26. Lawrence I, Lin K. Assay validation using the concordance correlation coefficient. Biometrics 1992:599-604. doi:10.2307/2532314.
27. Rücker C, Rücker G, Meringer M. Y-randomization and its variants in QSPR/QSAR. J Chem Inf Model 2007;47:2345-57. doi: 10.1021/ci700157b.
28. Toropova AP, Toropov AA, Veselinović AM, Veselinović JB, Benfenati E, Leszczynska D, et al. Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions. Ecotoxicol Environ Saf 2016;124:32-6. doi:10.1016/j.ecoenv.2015.09.038.
29. Chirico N, Gramatica P. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model 2012;52:2044-58. doi:10.1021/ci300084j.
30. Yordanova D, Schultz TW, Kuseva C, Tankova K, Ivanova H, Dermen I, et al. Automated and standardized workflows in the OECD QSAR Toolbox. Comput Toxicol 2019;10:89-104. doi:10.1016/j.comtox.2019.01.006.
31. Gatidou G, Vazaiou N, Thomaidis NS, Stasinakis AS. Biodegradability assessment of food additives using OECD 301F respirometric test. Chemosphere 2020;241:125071. doi: 10.1016/j.chemosphere.2019.125071.
32. Marzo M, Lavado G, Como F, Toropova A, Toropov A, Baderna D, et al. QSAR models for biocides: The example of the prediction of Daphnia magna acute toxicity. SAR QSAR Environ Res 2020;31:227-43. doi:10.1080/1062936X.2019.1709221.
33. Soleymani N, Ahmadi S, Shiri F, Almasirad A. QSAR and molecular docking studies of isatin and indole derivatives as SARS 3CLpro inhibitors. BMC Chem 2023;17:32. doi: 10.1186/s13065-023-00947-w.
34. Azimi A, Ahmadi S, Kumar A, Qomi M, Almasirad A. SMILES-based QSAR and molecular docking study of oseltamivir derivatives as influenza inhibitors. PACs 2023;43:3257-77. doi:10.1080/10406638.2022.2067194.
35. Toropova AP, Schultz TW, Toropov AA. Building up a QSAR model for toxicity toward Tetrahymena pyriformis by the Monte Carlo method: A case of benzene derivatives. Environ Toxicol Pharmacol 2016;42:135-45. doi:10.1016/j.etap.2016.01.010.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.IAU.PS.REC.1400.260


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lotfi S, Ahmadi S, Vardast Baghmisheh S, Almasirad A. Predicting Binding Affinity of Some Imatinib Derivatives as BCR-ABL Tyrosine Kinase Inhibitors Based on Monte Carlo Optimization. J. Ilam Uni. Med. Sci. 2024; 32 (4) :66-86
URL: http://sjimu.medilam.ac.ir/article-1-8190-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 32, Issue 4 (9-2024) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.17 seconds with 41 queries by YEKTAWEB 4666