1. Goudzal A, El Aissouq A, El Hamdani H, Ouammou A. QSAR modeling, molecular docking studies and ADMET prediction on a series of phenylaminopyrimidine-(thio) urea derivatives as CK2 inhibitors. Mater Today 2022;51:1851-62. doi: 10.1016/j.matpr.2020.08.044. 2. Yang M, Xi Q, Jia W, Wang X. Structure-based analysis and biological characterization of imatinib derivatives reveal insights towards the inhibition of wild-type BCR-ABL and its mutants. Bioorg Med Chem Lett 2019;29:126758. doi:10.1016/j.bmcl.2019.126758. 3. Oliveira A, Moura S, Pimentel L, Neto J, Dantas R, Silva-Jr F, et al. New imatinib derivatives with antiproliferative activity against A549 and K562 cancer cells. Molecules 2022;27:750. doi: 10.3390/molecules27030750. 4. An X, Tiwari AK, Sun Y, Ding P-R, Ashby Jr CR, Chen Z-S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk Res 2010;34:1255-68. doi:10.1016/j.leukres.2010.04.016. 5. Luo H, Quan H, Xie C, Xu Y, Fu L, Lou L. HH-GV-678, a novel selective inhibitor of Bcr-Abl, outperforms imatinib and effectively overrides imatinib resistance. Leukemia 2010;24:1807-9. doi:10.1038/leu.2010.169. 6. Hamzehali H, Lotfi S, Ahmadi S, Kumar P. Quantitative structure–activity relationship modeling for predication of inhibition potencies of imatinib derivatives using SMILES attributes. Sci Rep 2022;12;21708. doi:10.1038/s41598-022-26279-8. 7. Kumar P, Kumar A, Singh D. CORAL: Development of a hybrid descriptor based QSTR model to predict the toxicity of dioxins and dioxin-like compounds with correlation intensity index and consensus modelling. Environ Toxicol Pharmacol 2022; 93:103893. doi: 10.1016/j.etap.2022.103893. 8. Toropova A, Toropov A, Viganò E, Colombo E, Roncaglioni A, Benfenati E. Carcinogenicity prediction using the index of ideality of correlation. SAR QSAR Environ Res 2022;33;419-28. doi:10.1080/1062936X.2022.2076736. 9. Toropova AP, Toropov AA, Roncaglioni A, Benfenati E. The index of ideality of correlation improves the predictive potential of models of the antioxidant activity of tripeptides from frog skin (Litoria rubella). Comput Biol Med 2021;133;104370. doi:10.1016/j.compbiomed.2021.104370. 10. Kyaw Zin PP, Borrel A, Fourches D. Benchmarking 2D/3D/MD-QSAR Models for Imatinib Derivatives: How Far Can We Predict? J Chem Inf Modl 2020; 60:3342-60. doi:10.1021/acs.jcim.0c00200. 11. Lotfi S, Ahmadi S, Kumar P. A hybrid descriptor based QSPR model to predict the thermal decomposition temperature of imidazolium ionic liquids using Monte Carlo approach. J Mol Liq 2021;338:116465. doi:10.1016/j.molliq.2021.116465. 12. Duhan M, Sindhu J, Kumar P, Devi M, Singh R, Kumar R, et al. Quantitative structure activity relationship studies of novel hydrazone derivatives as α-amylase inhibitors with index of ideality of correlation. J Biomol Struct Dyn 2022;40: 4933-53. doi:10.1080/07391102.2020.1863861. 13. Achary P, Toropova A, Toropov A. Combinations of graph invariants and attributes of simplified molecular input-line entry system (SMILES) to build up models for sweetness. Food Res Int 2019;122:40-6. doi:10.1016/j.foodres.2019.03.067. 14. Ahmadi S, Azimi N. Quasi-SMILES-Based QSPR/QSAR Modeling. QSPR/QSAR Analysis Using SMILES and Quasi-SMILES: Springer; 2023. p. 191-210. doi:10.1007/978-3-031-28401-4_8. 15. Ahmadi S. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria. Chemosphere 2020;242:125192. doi:10.1016/j.chemosphere.2019.125192. 16. Das NR, Sharma T, Mallick A, Toropova AP, Toropov AA, Achary P. Computational Approach in Designing and Development of Novel Inhibitors of AKR1C1. Ambient Intelligence in Health Care: Springer; 2023. p. 325-37. doi:10.1007/978-981-19-6068-0_32. 17. Ghaedi A. Predicting the cytotoxicity of ionic liquids using QSAR model based on SMILES optimal descriptors. J Mol Liq 2015;208:269-79. doi: 10.1016/j.molliq.2015.04.049. 18. Singh R, Kumar P, Devi M, Lal S, Kumar A, Sindhu J, et al. Monte Carlo based QSGFEAR: prediction of Gibb's free energy of activation at different temperatures using SMILES based descriptors. New J Chem 2022;46:19062-72. doi:10.1039/D2NJ03515D. 19. Ahmadi S, Lotfi S, Kumar P. Quantitative structure–toxicity relationship models for predication of toxicity of ionic liquids toward leukemia rat cell line IPC-81 based on index of ideality of correlation. Toxicol Mech Methods 2022; 32:302-12. doi:10.1080/15376516.2021.2000686. 20. Lotfi S, Ahmadi S, Kumar P. The Monte Carlo approach to model and predict the melting point of imidazolium ionic liquids using hybrid optimal descriptors. RSC Adv 2021;11:33849-57. doi: 10.1039/D1RA06861J. 21. Ahmadi S, Ketabi S, Qomi M. CO2 uptake prediction of metal–organic frameworks using quasi-SMILES and Monte Carlo optimization. New J Chem 2022;46:8827-37. doi:10.1039/D2NJ00596D. 22. Kumar P, Kumar A. CORAL: QSAR models of CB1 cannabinoid receptor inhibitors based on local and global SMILES attributes with the index of ideality of correlation and the correlation contradiction index. Chemo Intell Lab Syst 2020;200:103982. doi: 10.1016/j.chemolab.2020.103982. 23. Shayanfar A, Shayanfar S. Is regression through origin useful in external validation of QSAR models? Eur J Phar Sci 2014;59:31-5. doi:10.1016/j.ejps.2014.03.007. 24. Consonni V, Ballabio D, Todeschini R. Comments on the definition of the Q 2 parameter for QSAR validation. J Chem Inf Model 2009;49:1669-78. doi: 10.1021/ci900115y. 25. Roy K, Kar S. The rm2 metrics and regression through origin approach: Reliable and useful validation tools for predictive QSAR models (Commentary on ‘Is regression through origin useful in external validation of QSAR models?’). Eur J Pharm Sci 2014;62:111-4. doi:10.1016/j.ejps.2014.05.019. 26. Lawrence I, Lin K. Assay validation using the concordance correlation coefficient. Biometrics 1992:599-604. doi:10.2307/2532314. 27. Rücker C, Rücker G, Meringer M. Y-randomization and its variants in QSPR/QSAR. J Chem Inf Model 2007;47:2345-57. doi: 10.1021/ci700157b. 28. Toropova AP, Toropov AA, Veselinović AM, Veselinović JB, Benfenati E, Leszczynska D, et al. Nano-QSAR: Model of mutagenicity of fullerene as a mathematical function of different conditions. Ecotoxicol Environ Saf 2016;124:32-6. doi:10.1016/j.ecoenv.2015.09.038. 29. Chirico N, Gramatica P. Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. J Chem Inf Model 2012;52:2044-58. doi:10.1021/ci300084j. 30. Yordanova D, Schultz TW, Kuseva C, Tankova K, Ivanova H, Dermen I, et al. Automated and standardized workflows in the OECD QSAR Toolbox. Comput Toxicol 2019;10:89-104. doi:10.1016/j.comtox.2019.01.006. 31. Gatidou G, Vazaiou N, Thomaidis NS, Stasinakis AS. Biodegradability assessment of food additives using OECD 301F respirometric test. Chemosphere 2020;241:125071. doi: 10.1016/j.chemosphere.2019.125071. 32. Marzo M, Lavado G, Como F, Toropova A, Toropov A, Baderna D, et al. QSAR models for biocides: The example of the prediction of Daphnia magna acute toxicity. SAR QSAR Environ Res 2020;31:227-43. doi:10.1080/1062936X.2019.1709221. 33. Soleymani N, Ahmadi S, Shiri F, Almasirad A. QSAR and molecular docking studies of isatin and indole derivatives as SARS 3CLpro inhibitors. BMC Chem 2023;17:32. doi: 10.1186/s13065-023-00947-w. 34. Azimi A, Ahmadi S, Kumar A, Qomi M, Almasirad A. SMILES-based QSAR and molecular docking study of oseltamivir derivatives as influenza inhibitors. PACs 2023;43:3257-77. doi:10.1080/10406638.2022.2067194. 35. Toropova AP, Schultz TW, Toropov AA. Building up a QSAR model for toxicity toward Tetrahymena pyriformis by the Monte Carlo method: A case of benzene derivatives. Environ Toxicol Pharmacol 2016;42:135-45. doi:10.1016/j.etap.2016.01.010.
|