1. Akter R, Islam MS, Islam MS, Aziz MA, Hussain MS, Millat MS, et al. A case-control study investigating the association of TP53 rs1042522 and CDH1 rs16260 polymorphisms with prostate cancer risk. Meta Gene 2021;30:100962. doi: 10.1016/j.mgene.2021.100962. 2. Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol 2019; 10:10-27. doi: 10.14740/wjon1166. 3. Zhang X, Cowper-Sal R, Bailey SD, Moore JH, Lupien M. Integrative functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the 17q24. 3 prostate cancer risk locus. Genome Res 2012; 22:1437-46. doi: 10.1101/gr.135665.111. 4. Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010; 24:1967-2000. doi: 10.1101/gad.1965810. 5. Patel AR, Klein EA. Risk factors for prostate cancer. Nat Clin Pract Urol 2009; 6:87-95. doi: 10.1038/ncpuro1290. 6. Yang Y, Wang W, Zhang L, Zhang S, Liu G, Yu Y, et al. Association of single nucleotide polymorphism rs6983267 with the risk of prostate cancer. Oncotarget 2016; 7:25528-34. doi: 10.18632/oncotarget.8186. 7. Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z, et al. The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis 2014; 1:149-61. doi: 10.1016/j.gendis.2014.09.004. 8. Gray IC, Campbell DA, Spurr NK. Single nucleotide polymorphisms as tools in human genetics. Hum Mol Genet 2000; 9:2403-8. doi: 10.1093/hmg/9.16.2403. 9. Van den Broeck T, Joniau S, Clinckemalie L, Helsen C, Prekovic S, Spans L, et al. The role of single nucleotide polymorphisms in predicting prostate cancer risk and therapeutic decision making. Biomed Res Int 2014; 2014:627510. doi: 10.1155/2014/627510. 10. Mistry K, Cable G. Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma. J Am Board Fam Pract 2003; 16:95-101. doi: 10.3122/jabfm.16.2.95. 11. Grossman DC, Curry SJ, Owens DK, Bibbins-Domingo K, Caughey AB, Davidson KW, et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA 2018; 319:1901-13. doi: 10.1001/jama.2018.3710. 12. Zhou CH, Wang JY, Cao SY, Shi XH, Zhang YG, Liu M, et al. Association between single nucleotide polymorphisms on chromosome 17q and the risk of prostate cancer in a Chinese population. Chin J Cancer 2011; 30:721-30. doi: 10.5732/cjc.011.10070. 13. Levin AM, Machiela MJ, Zuhlke KA, Ray AM, Cooney KA, Douglas JA. Chromosome 17q12 variants contribute to risk of early-onset prostate cancer. Cancer Res 2008; 68:6492-5. doi: 10.1158/0008-5472.CAN-08-0348. 14. Waters KM, Le Marchand L, Kolonel LN, Monroe KR, Stram DO, Henderson BE, et al. Generalizability of associations from prostate cancer genome-wide association studies in multiple populations. Cancer Epidemiol Biomarkers Prev 2009; 18:1285-9. doi: 10.1158/1055-9965.EPI-08-1142. 15. Yamada H, Penney KL, Takahashi H, Katoh T, Yamano Y, Yamakado M, et al. Replication of prostate cancer risk loci in a Japanese case–control association study. J Natl Cancer Inst 2009; 101:1330-6. doi: 10.1093/jnci/djp287. 16. Sun J, Purcell L, Gao Z, Isaacs SD, Wiley KE, Hsu FC, et al. Association between sequence variants at 17q12 and 17q24. 3 and prostate cancer risk in European and African Americans. Prostate 2008; 68:691-7. doi: 10.1002/pros.20754. 17. Rojas PA, Torres-Estay V, Cerda-Infante J, Montecinos VP, Domínguez J, Arenas J, et al. Association of a single-nucleotide polymorphism from chromosome 17q12 with the aggressiveness of prostate cancer in a Hispanic population. J Cancer Res Clin Oncol 2014; 140:783-8. doi: 10.1007/s00432-014-1635-1. 18. Zhou CH, Wang JY, Cao SY, Shi XH, Zhang YG, Liu M, et al. Association between single nucleotide polymorphisms on chromosome 17q and the risk of prostate cancer in a Chinese population. Chin J Cancer 2011; 30:721-30. doi: 10.5732/cjc.011.10070.
|