[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations67323963
h-index2721
i10-index20195

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 32, Issue 4 (9-2024) ::
Journal of Ilam University of Medical Sciences 2024, 32(4): 53-65 Back to browse issues page
Investigation and Comparison of Communication Network and Expression of KLF4 and POU5F1 Genes During Spermatogenesis
Maedeh Yazdani Dizicheh1 , Hossein Azizi * 2, Dariush Gholami3 , Amir Khaki4
1- Dept of Microbial Biotechnology, Faculty of Biotechnology, Amol University of New Technologies, Amol, Iran
2- Dept of Nano Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran , h.azizi@ausmt.ac.ir
3- Dept of Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
4- Dept of veterinary medicine, Faculty of veterinary medicine, Amol University of Special Modern Technologies, Amol, Iran
Abstract:   (33 Views)
Introduction:  Spermatogenesis is the primary process of sperm production occuring in seminiferous tubules. Spermatogonial stem cells (SSCs) have the ability for self-renewal, differentiation, and the transmission of genetic information to subsequent generations. KLF4 and POU5F1 are transcription factors expressed in a wide range of tissues and play key roles in such processes as apoptosis, differentiation, proliferation, and cellular development. The present study aimed to assess the expression levels of KLF4 and POU5F1 genes in mouse embryonic stem cells (mESCs), spermatogonial stem cells (SSCs), embryonic-like stem cells (ES-like), and testicular cells, and identify the signaling pathways associated with them in the process of spermatogenesis.
Materials & Methods: In this experimental study, spermatogonial cells were extracted from mouse testes using enzymatic digestion method and cultured in GSC medium containing FGF, EGF, and GDNF. Thereafter, the expression of KLF4 and POU5F1 genes was examined in mESCs, SSCs, ES-like, and testicular cells was investigated using immunocytochemistry, immunohistochemistry, and reverse transcription-polymerase chain reaction methods, and protein-protein interactions and signaling pathways were evaluated using bioinformatics methods.
Results: The KLF4 and POU5F1 genes exhibited positive expression in ES-like cells and testicular cells. The assessment of KLF4 mRNA and POU5F1 mRNA expression levels demonstrated that KLF4 expression is higher in mESCs and ES-like cells compared to other cells, while POU5F1 expression is higher in SSCs. Both KLF4 and POU5F1 are considered essential and powerful genes that share a common class and function.
Conclusion: The findings of this study indicated that KLF4 and POU5F1 play crucial roles in the proper development of sperm and are present in various types of cells, including mESCs, SSCs, ES-like cells, and testicular cells. These factors are key components of sexual stem cells and contribute to stem cell proliferation, making them potential diagnostic markers for these cell lines.
Keywords: Embryonic stem-like cells, KLF4, POU5F1, signaling pathways, Spermatogenesis, Spermatogonial stem cells
Full-Text [PDF 1118 kb]   (8 Downloads)    
Type of Study: Research | Subject: biotechnolohgy
Received: 2023/09/9 | Accepted: 2024/05/19 | Published: 2024/09/22
References
1. Huang P, Wang T. Spermatogonial stem cell and TGF-b {eta} involved regulation of proliferation and differentiation. arXiv 2017. doi:10.48550/arXiv.1706.03892.
2. Lu X, Yin P, Li H, Gao W, Jia H, Ma W. Transcriptome Analysis of Key Genes Involved in the Initiation of Spermatogonial Stem Cell Differentiation. Genes 2024;15:141. doi: 10.3390/genes15020141.
3. Yang L, Liao J, Huang H, Lee TL, Qi H. Stage-specific regulation of undifferentiated spermatogonia by AKT1S1-mediated AKT-mTORC1 signaling during mouse spermatogenesis. Dev Biol 2024 ;509:11-27. doi: 10.1016/j.ydbio.2024.02.002.
4. Asadi MH, Javanmardi S, Movahedin M. Derivation of ES-like cell from neonatal mouse testis cells in autologous sertoli cells co-culture system. Iran J Reprod Med 2014;12:37-46.
5. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature 2001;414:98-104. doi: 10.1038/35102160.
6. Waheeb R, Hofmann MC. Human spermatogonial stem cells: a possible origin for spermatocytic seminoma. Int J Androl 2011;34:e296-e305. doi:10.1111/j.1365-2605.2011.01199.x.
7. Griswold MD. Spermatogenesis: the commitment to meiosis. Physiol Rev 2016;96:1-17. doi: 10.1152/physrev.00013.2015.
8. Robles V, Herraez P, Labbé C, Cabrita E, Pšenička M, Valcarce DG, et al. Molecular basis of spermatogenesis and sperm quality. Gen Comp Endocrinol 2017;245:5-9. doi: 10.1016/j.ygcen.2016.04.026.
9. Haroush N, Levo M, Wieschaus E, Gregor T. Functional analysis of a gene locus in response to non-canonical combinations of transcription factors. arXiv 2023. doi: 10.48550/arXiv.2308.05685.
10. Dang DT, Pevsner J, Yang VW. The biology of the mammalian Krüppel-like family of transcription factors. Int J Biochem Cell Biol 2000;32:1103-21. doi:10.1016/S1357-2725(00)00059-5.
11. Zaehres H, Schöler HR. Induction of pluripotency: from mouse to human. Cell 2007;131:834-5. doi: 10.1016/j.cell.2007.11.020.
12. Behr R, Kaestner KH. Developmental and cell type-specific expression of the zinc finger transcription factor Krüppel-like factor 4 (Klf4) in postnatal mouse testis. Mech Dev 2002;115:167-9. doi: 10.1016/S0925-4773(02)00127-2.
13. Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): What we currently know. Gene 2017;611:27-37. doi: 10.1016/j.gene.2017.02.025.
14. Wang X, Dai J. Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells 2010;28:885-93. doi:10.1002/stem.419.
15. Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP, et al. Repression of kit expression by Plzf in germ cells. Mol Cell Biol 2007;27:6770-81. doi:10.1128/MCB.00479-07.
16. Jin X, Li Y, Guo Y, Jia Y, Qu H, Lu Y, et al. ERα is required for suppressing OCT4‐induced proliferation of breast cancer cells via DNMT1/ISL1/ERK axis. Cell Prolif 2019;52:e12612. doi: 10.1111/cpr.12612.
17. Hashemi Karoii D, Azizi H. A review of protein-protein interaction and signaling pathway of Vimentin in cell regulation, morphology and cell differentiation in normal cells. J Recept Signal Transduct Res 2022;42:512-20. doi:10.1080/10799893.2022.2047199.
18. Azizi H, Karoii DH, Skutella T. Oct4 Protein and Gene Expression Analysis in the Differentiation of Spermatogonia Stem Cells Into Functional Mature Neurons by Immunohistochemistry, Immunocytochemistry, and Bioinformatics Analysis. Stem Cell Rev Rep 2023;19:1828-44. doi: 10.1007/s12015-023-10548-8.
19. Azizi H, Ranjbar M, Rahaiee S, Govahi M, Skutella T. Investigation of VASA gene and protein expression in neonate and adult testicular germ cells in mice in vivo and in vitro. Cell J (Yakhteh) 2020;22:171. doi: 10.22074/cellj.2020.6619.
20. Azizi H, Tabar AN, Skutella T, Govahi M. In vitro and in vivo determinations of the anti-GDNF family receptor alpha 1 antibody in mice by immunochemistry and RT-PCR. Int J Fertil Steril 2020;14:228-33. doi: 10.22074/ijfs.2020.6051.
21. Aksoy I, Giudice V, Delahaye E, Wianny F, Aubry M, Mure M, et al. Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells. Nat Commun 2014;5:3719. doi: 10.1038/ncomms4719.
22. Daigneault BW, Rajput S, Smith GW, Ross PJ. Embryonic POU5F1 is required for expanded bovine blastocyst formation. Sci Rep 2018;8:7753. doi: 10.1038/s41598-018-25964-x.
23. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005;122:947-56. doi: 10.1016/j.cell.2005.08.020.
24. Hawkins K, Joy S, McKay T. Cell signalling pathways underlying induced pluripotent stem cell reprogramming. World J Stem Cells 2014;6:620. doi: 10.4252/wjsc.v6.i5.620.
25. Bruce SJ, Gardiner BB, Burke LJ, Gongora MM, Grimmond SM, Perkins AC. Dynamic transcription programs during ES cell differentiation towards mesoderm in serum versus serum-free BMP4 culture. BMC Genomics 2007;8:1-26. doi: 10.1186/1471-2164-8-365.
26. Godmann M, Gashaw I, Katz JP, Nagy A, Kaestner KH, Behr R. Krüppel-like factor 4, a “pluripotency transcription factor” highly expressed in male postmeiotic germ cells, is dispensable for spermatogenesis in the mouse. Mech Dev 2009;126:650-64. doi: 10.1016/j.mod.2009.06.1081.
27. Hamil KG, Hall SH. Cloning of rat Sertoli cell follicle-stimulating hormone primary response complementary deoxyribonucleic acid: regulation of TSC-22 gene expression. Endocrinology 1994;134:1205-12. doi: 10.1210/endo.134.3.8161377.
28. Bruno S, Schlaeger TM, Del Vecchio D. Epigenetic OCT4 regulatory network: stochastic analysis of cellular reprogramming. NPJ Syst Biol Appl 2024;10:3. doi: 10.1038/s41540-023-00326-0.
29. Chen F, Cooney AJ, Wang Y, Law SW, O'Malley BW. Cloning of a novel orphan receptor (GCNF) expressed during germ cell development. Mol Endocrinol 1994;8:1434-44. doi: 10.1210/mend.8.10.7854358.
30. Pesce M, Wang X, Wolgemuth DJ, Schöler HR. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 1998;71:89-98. doi: 10.1016/s0925-4773(98)00002-1.
31. Dann CT, Alvarado AL, Molyneux LA, Denard BS, Garbers DL, Porteus MH. Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation. Stem Cells 2008;26:2928-37. doi: 10.1634/stemcells.2008-0134.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: Ir.ausmt.Rec.1402.007


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdani Dizicheh M, Azizi H, Gholami D, Khaki A. Investigation and Comparison of Communication Network and Expression of KLF4 and POU5F1 Genes During Spermatogenesis. J. Ilam Uni. Med. Sci. 2024; 32 (4) :53-65
URL: http://sjimu.medilam.ac.ir/article-1-8087-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 32, Issue 4 (9-2024) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.2 seconds with 41 queries by YEKTAWEB 4657