[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019

Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Registered in



:: Volume 29, Issue 4 (10-2021) ::
Journal of Ilam University of Medical Sciences 2021, 29(4): 93-102 Back to browse issues page
Comparison of the Genetic Profile of rs4646994 Single Nucleotide Polymorphism of the ACE Gene in the Elite Male Weightlifters and Non-athletes
Seyyed Rasoul Mousavi * 1, Mohammadreza Batavani2 , Mohsen Ghofrani3
1- MSc of Exercise Physiology, Department of Physical Education and Sport Science, Sistan and Baluchestan University, Sistan and Baluchestan, Iran , mousavi.rasoul1400@gmail.com
2- Assistant Professor ,Center of Physical Education, Isfahan University of Technology, Isfahan 84156-83111, Iran
3- Associate Professor, Department of Physical Education and Sport Sciences, Faculty of Physical Education and Sport Sciences, University of Sistan and Baluchestan, Sistan and Baluchestan, Iran
Abstract:   (1391 Views)
Introduction: The ACE gene encodes the angiotensin-converting enzyme (ACE), which is characterized by the presence of allele I or the absence of allele D of a 287-bp fragment. The D allele is associated with higher ACE activity and increased angiotensin II levels and performance in strength-oriented exercise tasks. This study aimed to compare the genetic profile of rs4646994 single nucleotide polymorphism of the ACE gene in the elite male weightlifters and non-athletes.
Material & Methods: In total, 30 elite male weightlifters (league, country, national team, Asian, world, and Olympic champions) living in Isfahan province along with 43 healthy non-athlete volunteers who were matched in age, height, and weight to the elite group formed the subjects of the study. After completing the consent form, saliva samples were collected from the participants, and after DNA extraction, ACE genotypes were determined using PCR-RLFP and electrophoresis techniques. Data analysis was performed using independent t-test, chi-square, and logistic regression in SPSS software (version 20).
(Ethic code: 7993)
Findings: The results showed that the prevalence of D allele in elite weightlifters and non-athletes was significantly higher than allele I in their groups (P<0.05). Moreover, in the genotyping distribution, D/I was most common both in the study population (7.50%), as well as weightlifters (7.56%) and non-athletes (5.46%). However, there was no significant difference in the elite weightlifters and non-athletes regarding the distribution of D/I ACE genotyping (χ2=0/31).
Discussion & Conclusion: The study showed a positive relationship between Iranian elite weightlifters and the ACE D allele, which probably distinguishes it as one of the effective genetic factors in creating a strength phenotype of Iranian weightlifters.
Keywords: Allele, Angiotensin-converting enzyme, Elite weightlifters, Mononucleotide polymorphism
Full-Text [PDF 551 kb]   (432 Downloads)    
Type of Study: Research | Subject: Physical Education
Received: 2021/04/9 | Accepted: 2021/09/1 | Published: 2021/11/1
1. Ahmetov II, Fedotovskaya ON. Current progress in sports genomics. Adv Clin Chem 2015;70:247-314. doi.10.1016/bs.acc.2015.03.003
2. Brutsaert TD, Parra EJ. What makes a champion? Explaining variation in human athletic performance. Res Physiol Neurobiol2006;151:109-23. doi. 10.1016/j.resp.2005.12.013
3. Guilherme JPLF, Tritto ACC, North KN, Lancha Junior AH, Artioli GG. Genetics and sport performance current challenges and directions to the future. Rev Brasil Edu Fis Esp2014;28:177-93. doi.10.1590/S1807-55092014000100177
4. Batavani MR, GHaedi K, Emadi S. Gene and sport performance.1 th ed. Isfahan Branch Jahad Daneshgahi Publication. 2020;P. 1-193.
5. Moran CN, Vassilopoulos C, Tsiokanos A, Jamurtas AZ, Bailey ME, Montgomery HE, et al. The associations of ACE polymorphisms with physical, physiologicaland skill parameters in adolescents. European J Hum Gen 2006;14:332-9. doi.10.1038/sj.ejhg.5201550
6. Alhencgelas F, Richard J, Courbon D, Warnet J, Corvol P. Distribution of plasma angiotensin I converting enzyme levels in healthy men relationship to environmental and hormonal parameters. J Lab Clin Med1991;117:33-9.
7. Rigat B, Hubert C, Alhencgelas F, Cambien F, Corvol P, Soubrier F. An insertion deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest1990;86:1343-6.
8. Bhagi S, Srivastava S, Sarkar S, Singh SB. Distribution of performance related gene polymorphisms in different ethnic groups of the Indian Army. J Bas Clin Physiol Pharmacol2013;24:225-34. doi.10.1515/jbcpp-2013-0068
9. Ulucan K, Gole S. ACE I/D polymorphism determination in Turkish elite wind surfers. Sport Sci Rev2014;23:79. doi.10.2478/ssr-2014-0005
10. Storey A, Smith HK. Unique aspects of competitive weightlifting. Sports Med 2012;42:769-90. doi.10.1007/BF03262294
11. Sale SM, Mane VP, Pawar VR, Mohite SN, Dhaka V. Clinical correlation of pancytopenia with bone marrow study in a tertiary hospital. Indian J Patholo Oncol 2016;2:247-54. doi.10.5958/2394-6792.2016.00048.X.
12. Gineviciene V, Jakaitiene A, Aksenov M, Aksenova A, Astratenkova ADI, Egorova E, et al. Association analysis of ace and actn3 and ppargc1a gene polymorphisms in two cohorts of European strength and power athletes. Biolo Sport2016;3:193-9. doi.10.5604/20831862.1201051
13. Montgomery H, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, et al.Human gene for physical performance. Nature1998;393:221-2. doi.10.1038/30374
14. Myerson S, Hemingway H, Budget R, Martin J, Humphries S, Montgomery H. Human angiotensin I-converting enzyme gene and endurance performance. J Appl Physiol 1999;87:1313-6. doi.10.1152/jappl.1999.87.4.1313
15. Ahmetov I, Popov D, Astratenkova I, Druzhevskaya A, Missina S, Vinogradova O, et al. The use of molecular genetic methods for prognosis of aerobicand anaerobic performancein athletes. Hum Physiol 2008;34:338-42. doi.10.1134/S0362119708030110
16. Hruskovicova H, Dzurenkova D, Selingerova M, Bohus B. The angiotensin converting enzyme I/D polymorphism in long distance runners. J Sport Med Phys Fit 2006;46:509.
17. Scanavini D, Bernardi F, Castoldi E, Conconi F, Mazzoni G. Increased frequency of the homozygous II ACE genotype in Italian olympic endurance athletes. European J Hum Gen 2002;10:576-7. doi. 10.1038/sj.ejhg.5200852
18. Wang G, Mikami E, Chiu LL, Deason M, Fuku N, Miyachi M, et al. Association analysis of ace and actn3 in elite caucasian and East Asian swimmers. Med Sci Sport Exe2013;45:892-900. doi. 10.1249/MSS.0b013e31827c501f
19. Pimjan L, Ongvarrasopone C, Chantratita W, Polpramool C, Cherdrungsi P, Bangrak P, et al. A Study on ace, actn3, and vdr genes polymorphism in Thai weightlifters. Wal J Sci Technol 2017;15:609-26.doi.10.48048/wjst.2018.3525
20. Batavani MR, Marandi SM, Ghaedi K, Esfarjani F. [Frequency analysis of rs4646 polymorphism in angiotensin converting enzyme gene in professional Karateka athletes compared to the amateur athletes and non-athlete individuals]. J Isfahan Med Sch 2017;34:1323-9. (Persian)
21. Eider J, Cieszczyk P, Ficek K, Leonska-Duniec A, Sawczuk M, Maciejewska-Karlowska A, et al. The association between D allele of the ACE gene and power performance in polish elite athletes. Sci Sport2013;28:325-30. doi.10.1016/j.scispo.2012.11.005
22. Habibullayevna BG, Sobitjanovna AS, Makhmusovna M, Yusubjanovna Z. Optimization of molecular genetic methods for the determination of resistance markers using genotyping of actn3 and ace genes. European J Mole Clin Med 2020;7:67-74.
23. Travis SK, Goodin JR, Beckham GK, Bazyler CD. Identifying a test to monitor weightlifting performance in competitive male and female weightlifters. Sports2018;6:46.
24. Pimjan L, Ongvarrasopone C, Chantratita W, Polpramool C, Cherdrungsi P, Bangrak P, et al. A study on ace and actn3 and vdr genes polymorphism in Thai weightlifters. Wal J SciTechnol2018;15:609-26. doi.10.48048/wjst.2018.3525
25. Woods D, Hickman M, Jamshidi Y, Brull D, Vassiliou V, Jones A, et al. Elite swimmers and the d allele of the ace id polymorphism. Human Gen2001; 108:230-2. doi.10.1007/ s004390100466
26. Nazarov IB, Woods DR, Montgomery HE, Shneider OV, Kazakov VI, Tomilin NV, et al. The angiotensin converting enzyme id polymorphism in Russian athletes. European J Hum Gen2001;9:797-801. doi.10.1038/sj.ejhg.5200711
27. Montgomery HE, Clarkson P, Dollery CM, Prasad K, Losi MA, Hemingway H, et al. Association of angiotensin-converting enzyme gene id polymorphism with change in left ventricular mass in response to physical training. Circulation1997;96:741-7. doi.10.1161/01.CIR.96.3.741
28. Charbonneau DE, Hanson ED, Ludlow AT, Delmonico MJ, Hurley BF, Roth SM. ACE genotype and the muscle hypertrophic and strength responses to strength training. Med Sci Sport Exe 2008;40:677. doi.10.1249/MSS.0b013e318161eab9
29. Fatini C, Guazzelli R, Manetti P, Battaglini B, Gensini F, Vono R, et al. RAS genes influence exercise induced left ventricular hypertrophy: an elite athletes study. Med Sci Sport Exer2000;32:1868-72.
30. Folland J, Leach B, Little T, Hawker K, Myerson S, Montgomery H, et al. Angiotensin‐converting enzyme genotype affects the response of human skeletal muscle to functional overload. Exp Physiol 2000;85:575-9. doi.10.1111/j.1469-445X.2000.02057.x
31. Giaccaglia V, Nicklas B, Kritchevsky S, Mychalecky J, Messier S, Bleecker E, et al. Interaction between angiotensin converting enzyme insertion deletion genotype and exercise training on knee extensor strength in older individuals. Int J Sport Med 2008;29:40-4. doi.10.1055/s-2007-96664842
32. Williams AG, Rayson MP, Jubb M, World M, Woods D, Hayward M, et al. The ACE gene and muscle performance. Nature2000;403:614. doi. 10.1038/35001141
33. Khaled E. Anthropometric measurements, somatotypes and physical abilities as a function to predict the selection of talents junior weightlifters. Sci Move Health2013;3:166-72.
34. Pescatello LS, Kostek MA, Gordishdressman H, Thompson PD, Seip RL, Price TB, et al. ACE id genotype and the muscle strength and size response to unilateral resistance training. Med Sci Sport Exe 2006;38:1074-81. doi.10.1249/01.mss.0000222835.28273.80
35. Rankinen T, Wolfarth B, Simoneau JA, Maierlenz D, Rauramaa R, Rivera MA, et al. No association between the angiotensin-converting enzyme ID polymorphism and elite endurance athlete status. J Appl Physiol2000;88:1571-5. doi.10.1152/jappl.2000.88.5.1571
36. Gineviciene V, Pranculis A, Jakaitiene A, Milasius K, Kucinskas V. Genetic variation of the human ACE and ACTN3 genes and their association with functional muscle properties in Lithuanian elite athletes. Medicina2011;47:40.
37. Amir O, Amir R, Yamin C, Attias E, Eynon N, Sagiv M, et al. The ace deletion allele is associated with Israeli elite endurance athletes. Exp Physiol 2007;92:881-6. doi.10.1113/expphysiol.
Send email to the article author

Add your comments about this article
Your username or Email:


Ethics code: 7993

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi S R, Batavani M, Ghofrani M. Comparison of the Genetic Profile of rs4646994 Single Nucleotide Polymorphism of the ACE Gene in the Elite Male Weightlifters and Non-athletes. J. Ilam Uni. Med. Sci. 2021; 29 (4) :93-102
URL: http://sjimu.medilam.ac.ir/article-1-7055-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 29, Issue 4 (10-2021) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.16 seconds with 41 queries by YEKTAWEB 4642