[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019

Search in website

Advanced Search
Receive site information
Enter your Email in the following box to receive the site news and information.
Registered in



:: Volume 29, Issue 6 (1-2022) ::
Journal of Ilam University of Medical Sciences 2022, 29(6): 90-101 Back to browse issues page
Effect of High Fat Diet and Endurance Training on the Gene Expression of Sarco/Endoplasmic Reticulum ATPase2 (SERCA2) and Ryanodine Receptor2 (RYR2) under Near-Thermoneutrality in Inguinal Adipose Tissue of Mice
Saeed Daneshyar * 1, Amir Khosravi2 , Yazdan Fourotan3
1- Dept of Physical Education, Faculty of Humanities, Ayatollah Alozma Boroujerdi University, Lorestan, Iran , s.daneshyar@yahoo.com
2- Dept of Physical Education, Faculty of Humanities, Ayatollah Alozma Boroujerdi University, Lorestan, Iran
3- Dept of Physical Education, Islamic Azad University, Asad-Abad Branch, Hamadan, Iran
Abstract:   (1186 Views)
Introduction: Non shivering thermogenesis is partly yielded by a futile-calcium-cycle mechanism that is regulated by Sarco/Endoplasmic Reticulum ATPase2 (SERCA2) and Ryanodine Receptor2 (RYR2).  This study aimed to investigate the effect of a high-fat diet and endurance training under near-thermoneutrality (in which humans live) on the gene expression of SERCA2 and RYR2 in inguinal subcutaneous adipose tissue in mice.
Material & Methods: A total of 28 C57BL/6 male mice were assigned into four groups of seven animals per group. The groups included 1) control 2), high-fat diet (HFD), 3) endurance training (ET), and 4) HFD-ET. The environment temperature was set out at 26°C. The mice in the HFD group were fed a high-fat diet (fat=42%) for 12 weeks. The mice in the ET group underwent ET on the treadmill for six weeks. The mice of the HFD-ET had both the HFD and ET. The real-time-PCR method was used to measure the gene expression of SERCA2a, SERCA2b, and RYR2 in adipose tissue.
(Ethic code: ABRU.AC.IR/15664-96.44)
Findings: Two-way ANOVA showed that the relative gene expression of SERCA2a, SERCA2b, and RYR2 were not significantly affected by HFD, ET, and HFD-ET (P>0.05).
Discussion & Conclusion: The HFD and ET did not change the regulatory proteins of the futile-calcium-cycle under near-thermoneutrality in the beige adipose tissue. Therefore, it was speculated that the non-shivering thermogenesis that is induced by these conditions might occur independently of futile-cycle-calcium.
Keywords: Beige adipose tissue, Futile cycle, Obesity, Thermogenesis
Full-Text [PDF 643 kb]   (545 Downloads)    
Type of Study: Research | Subject: susteenance
Received: 2020/11/11 | Accepted: 2021/07/5 | Published: 2022/02/4
1. Hill JO, Wyatt HR, and Peters JC. Energy balance and obesity. Circulation 2012; 126: 126-32. doi.10.1161/circulationaha.111.087213
2. Westerterp KR. Exercise, energy balance and body composition. Eur J Clin Nutr 2018; 72: 1246-50. doi.10.1038/s41430-018-0180-4
3. Soltis AR, Kennedy NJ, Xin X, Zhou F, Ficarro SB, Yap YS, et al. Hepatic dysfunction caused by consumption of a high fat diet. Cell Rep 2017; 21: 3317-28. doi.10.1016/j.celrep.2017.11.059
4. Kawanishi N, Yano H, Mizokami T, Takahashi M, Oyanagi E, Suzuki K. Exercise training attenuates hepatic inflammation fibrosis and macrophage infiltration during diet induced obesity in Mice. Brain Behavior Immun 2012; 26: 931-41. doi.10.1016/j.bbi.2012.04.006
5. Cummins TD, Holden CR, Sansbury BE, Gibb AA, Shah J, Zafar N, et al. Metabolic remodeling of white adipose tissue in obesity. Am J PhysiolEndocrinol Metab 2014; 307: 262-77. doi.10.1152/ajpendo.00271.2013
6. Cohen P, Spiegelman BM. Brown and beige fat molecular parts of a thermogenic machine. Diabetes 2015; 64: 2346-51.
7. Walden IR, Timmons JA, Cannon B, Nedergaard J. Recruited nonrecruited molecular signatures of brown brite and white adipose tissues. Am J Physiol Endocrinol Metab 2012; 302:19-31. doi.10.1152/ajpendo.00249.2011.
8. Wronska A and Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol 2012; 205: 194-208. doi.10.1111/j.1748-1716.2012.02409.x
9. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: 444-52. doi.10.1152/ajpendo.00691.2006
10. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. New England J Med 2009; 360: 1518-25. doi.10.1056/NEJMoa0808949
11. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold activated brown adipose tissue in healthy men. New England J Med2009; 360: 1500-8. doi.10.1056/NEJMoa0808718
12. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. New England J Med 2009; 360: 1509-17. doi.10.1056/NEJMoa0810780
13. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEBJ 2009; 23 : 3113-20. doi.10.1096/fj.09-133546
14. Lee P, Werner C, Kebebew E, and Celi F. Functional thermogenic beige adipogenesis is inducible in human neck fat. International journal of obesity 2014; 38: 170-6. doi.10.1038/ijo.2013.82
15. Liu X, Cervantes C, Liu F. Common and distinct regulation of human and mouse brown and beige adipose tissues a promising therapeutic target for obesity. Prote Cell 2017; 8: 446-454. doi. 10.1007/s13238-017-0378-6
16. Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, et al. Human BAT possesses molecular signatures that resemble beige brite cells. Plos One 2012; 7: 49452. doi.10.1371/journal.pone.0049452
17. Harms M and Seale P. Brown and beige fat development, function and therapeutic potential. Nature Med2013; 19: 1252-63. doi. 10.1038/nm.3361
18. Jong JMA, Larsson O, Cannon B, Nedergaard J. A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab2015;308: 1085-105. doi.10.1152/ajpendo.00023.2015.
19. Wu MV, Bikopoulos G, Hung S, Ceddia RB. Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats impact on whole-body energy expenditure. J Biol Chem 2014; 289: 34129-40. doi. 10.1074/jbc.M114.591008
20. Stanford KI, Middelbeek RJW, Goodyear LJ. Exercise effects on white adipose tissue beiging and metabolic adaptations. Diabetes 2015; 64: 2361-8. doi.10.2337/db15-0227
21. Lehnig AC, Dewal RS, Baer LA, Kitching KM, Munoz VR, Arts PJ, et al. Exercise training induces depot specific adaptations to white and brown adipose tissue. Science 2019; 11 425-39. doi.10.1016/j.isci.2018.12.033
22. Lehnig AC, Stanford KI. Exercise induced adaptations to white and brown adipose tissue. J Exp Biol 2018; 221: 161570. doi.10.1242/jeb.161570
23. Dewal RS, Stanford KI. Effects of exercise on brown and beige adipocytes. Biochim Biophys Acta Mole Cell Biol Lip 2019; 1864: 71-8. doi. 10.1016/j.bbalip.2018.04.013
24. Aldiss P, Betts J, Sale C, Pope M, Budge H, Symonds ME. Exercise induced browningof adipose tissues. Metab Clin Exp 2018; 81 63-70. doi.10.1016/j.metabol.2017.11.009
25. McKie GL, Wright DC. Biochemical adaptations in white adipose tissue following aerobic exercise from mitochondrial biogenesis to browning. Biochem J 2020; 477: 1061-81. doi. 10.1042/BCJ20190466
26. Shabalina IG, Petrovic N, Jong JM, Kalinovich AV, Cannon B, Nedergaard J. UCP1 in brite beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 2013; 5: 1196-203. doi.10.1016/j.celrep.2013.10.044
27. Ikeda K, Kang Q, Yoneshiro T, Camporez JP, Maki H, Homma M, et al. UCP1 independent signaling involving SERCA2b mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nature Med 2017; 23: 1454-65. doi.10.1038/nm.4429
28. Ukropec J, Anunciado RP, Ravussin Y, Hulver MW, and Kozak LP. UCP1-independent thermogenesis in white adipose tissue of cold acclimated Ucp1 Mice. J Biol Chem 2006; 281: 31894-908. doi.10.1074/jbc.M606114200
29. de Meis L. Brown adipose tissue Ca2+ ATPase uncoupled ATP hydrolysis and thermogenic activity. J Biol Chem 2003; 278: 41856-61. doi.10.1074/jbc.M308280200
30. de Meis L, Arruda AP, Costa RM, Benchimol M. Identification of a Ca2+ ATPase in brown adipose tissue mitochondria regulation of thermogenesis by Atp and Ca2+. J Biol Chem2006; 281: 16384-90. doi.10.1074/jbc.M600678200
31. Fromme T and Klingenspor M. Uncoupling protein 1 expression and high fat diets. Am J Reg Int Comp Physiol2011; 300: R1-R8. doi.10.1152/ajpregu.00411.2010
32. Américo ALV, Muller CR, Vecchiatto B, Martucci LF, Fonseca-Alaniz MH, Evangelista FS. Aerobic exercise training prevents obesity and insulin resistance independent of the renin angiotensin system modulation in the subcutaneous white adipose tissue. Plos One 2019; 14: 215896. doi.10.1371/journal.pone.0215896
33. Perez GS, Cordeiro GD, Santos LS, Espirito DD, Boaventura GT, Barreto JM. Does a high fat diet induced obesity model brown adipose tissue thermogenesis? Arch Med Sci 2019; 15: 86781. doi.10.5114/aoms.2019.86781
34. Tsiloulis T, Watt MJ. Exercise and the regulation of adipose tissue metabolism. Prog Mol Biol Transl Sci 2015; 135 175-201. doi.10.1016/bs.pmbts.2015.06.016
35. Aquilano K, Sciarretta F, Turchi R, Li B-H, Rosina M, Ceci V, et al. Low protein high carbohydrate diet induces AMPK dependent canonical and non canonical thermogenic response in subcutaneous adipose tissue. BioRxiv 2020; 36:101633. doi.10.1016/j.redox.2020.101633
36. Amano Y, Nonaka Y, Takeda R, Kano Y, Hoshino D. Effects of electrical stimulation induced resistance exercise training on white and brown adipose tissues and plasma meteorin like concentration in Rats. Physiol Rep 2020; 8: 14540. doi.10.14814/phy2.14540
37. Borzykh A, Selivanova E, Shvetsova A, Kuzmin I, Martyanov A, Nesterenko A, et al. Changes in the expression of genes regulating calcium homeostasis in rat myocardium induced by voluntary wheel training: the role of thyroid hormones. Biochem Supple Ser Memb Cell Biol 2020; 14: 67-73. doi. 10.1134/S1990747820010043
38. Park SW, Zhou Y, Lee J, Lee J, and Ozcan U. Sarco plasmic reticulum Ca2+ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proce Na Acad Sci 2010; 107: 19320-25. doi.10.1073/pnas.1012044107
39. Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 2011; 473: 528-31. doi.10.1038/nature09968
40. Bastias M, Zagmutt S, Soler MC, Serra D, Mera P, Herrero L. Impact of adaptive thermogenesis in mice on the treatment of obesity. Cells 2020; 9: 316. doi.10.3390/cells9020316
41. David JM, Chatziioannou AF, Taschereau R, Wang H, Stout DB. The hidden cost of housing practices using noninvasive imaging to quantify the metabolic demands of chronic cold stress of laboratory Mice. Comp Med 2013; 63: 386-391.
42. Albustanji L, Perez GS, AlHarethi E, Aldiss P, Bloor I, Barreto JM, et al. Housing temperature modulates the impact of diet-induced rise in fat mass on adipose tissue before and during pregnancy in Rats. Front Physiol 2019; 10: 209. doi.10.3389/fphys.2019.00209
43. Raun SH, Henriquez-Olguín C, Karavaeva I, Ali M, Møller LLV, Kot W, et al. Housing temperature influences exercise training adaptations in Mice. Nature Com 2020; 11: 1560. doi.10.1038/s41467-020-15311-y
44. McKie GL, Medak KD, Knuth CM, Shamshoum H, Townsend LK, Peppler WT, et al. Housing temperature affects the acute and chronic metabolic adaptations to exercise in Mice. J Physiol 2019; 597: 4581-600. doi.10.1038/s41467-020-15311-y
45. Fischer AW, Cannon B, Nedergaard J. Optimal housing temperatures for Mice to mimic the thermal environment of humans an experimental study. Mol Metab 2018; 7 161-170. doi.10.1016/j.molmet.2017.10.009
46. Benoit B, Plaisancie P, Awada M, Geloen A, Estienne M, Capel F, et al. High fat diet action on adiposity inflammation and insulin sensitivity depends on the control low fat diet. Nut Res 2013; 33: 952-60. doi.10.1016/j.nutres.2013.07.017
47. Hoydal MA, Wisloff U, Kemi OJ, Ellingsen O. Running speed and maximal oxygen uptake in rats and Mice practical implications for exercise training. European J Cardiovas Preve Rehabil 2007; 14: 753-60. doi.10.1097/HJR.0b013e3281eacef1
48. Arras M, Autenried P, Rettich A, Spaeni D, and Rulicke T. Optimization of intraperitoneal injection anesthesia in Mice drugs dosages adverse effects and anesthesia depth. Comp Med 2001; 51: 443-56.
49. Miranda CS, Silva F, Martins FF, Rachid TL, Mandarim CA, Souza V. PPAR alpha activation counters brown adipose tissue whitening a comparative study between high fat and high fructose fed mice. Nutrition 2020; 110791. doi.10.1016/j.nut.2020.110791
50. Lipskaia L, Keuylian Z, Blirando K, Mougenot N, Jacquet A, Rouxel C, et al. Expression of sarco plasmic reticulum calcium ATPase system in normal mouse cardiovascular tissues heart failure and atherosclerosis. Biochim Biophys Acta Mole Cell Res 2014; 1843: 2705-18. doi.10.1016/j.bbamcr.2014.08.002
51. Santulli G, Pagano G, Sardu C, Xie W, Reiken S, Ascia SL, et al. Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J Clin Invest 2015; 125: 1968-78. doi.10.1172/JCI79273
52. Parousis A, Carter HN, Tran C, Erlich AT, Mesbahmoosavi ZS, Pauly M, et al. Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells. Autophagy 2018; 14: 1886-97. doi.10.1080/15548627.2018.1491488
53. Nolan T, Hands RE, and Bustin SA. Quantification of mRNA using real time RT-PCR. Nature Prot 2006; 1: 1559-82 doi.10.1038/nprot.2006.236
54. Wong ML and Medrano JF. Real time PCR for mRNA quantitation. BioTech 2005; 39: 75-85. doi.10.2144/05391RV01
55. Kim A and Park T. Diet induced obesity regulates the galanin mediated signaling cascade in the adipose tissue of Mice. Mole Nutr Food Res 2010; 54: 1361-70. doi. 10.1002/mnfr.200900317
56. Chang SH, Song NJ, Choi JH, Yun UJ, and Park KW. Mechanisms underlying UCP1 dependent and independent adipocyte thermogenesis. Obesit Rev 2019; 20: 241-51. doi.10.1111/obr.12796
57. Hughes DC, Ellefsen S, Baar K. Adaptations to endurance and strength training. Cold Spr Harb Pers Med2018; 8 :29769. doi.10.1101/cshperspect.a029769
58. Belke DD. Swim exercised Mice show a decreased level of protein glcnacylation and expression of glcnac transferase in heart. J Appl Physiol 2011; 111: 157-62. doi. 10.1152/japplphysiol.00147.2011
59. Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, et al. The regulation of sarco plasmic reticulum calcium ATPases. Canadian J Physiol Pharmacol 2015; 93: 843-54. doi.10.1139/cjpp-2014-0463
60. Silva JV, Freitas MJ, Fardilha M. Tissue specific cell signaling. Spr Natur Switzerland 2020;2:123-7. doi.10.1007/978-3-030-44436-5
61. Guo J, Bian Y, Bai R, Li H, Fu M, Xiao C. Globular adiponectin attenuates myocardial ischemian reperfusion injury by upregulating endoplasmic reticulum Ca2+ ATPase activity and inhibiting endoplasmic reticulum stress. J Cardiovas Pharmacol 2013; 62: 143-53. doi.10.1097/FJC.0b013e31829521af
62. Ukropec J, Anunciado RV, Ravussin Y, Kozak LP. Leptin is required for uncoupling protein-1-independent thermogenesis during cold stress. Endocrinology2006; 147: 2468-80. doi.10.1210/en.2005-1216
Send email to the article author

Add your comments about this article
Your username or Email:


Ethics code: ABRU.AC.IR/15664-96.44

XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Daneshyar S, Khosravi A, Fourotan Y. Effect of High Fat Diet and Endurance Training on the Gene Expression of Sarco/Endoplasmic Reticulum ATPase2 (SERCA2) and Ryanodine Receptor2 (RYR2) under Near-Thermoneutrality in Inguinal Adipose Tissue of Mice. J. Ilam Uni. Med. Sci. 2022; 29 (6) :90-101
URL: http://sjimu.medilam.ac.ir/article-1-6846-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 29, Issue 6 (1-2022) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.16 seconds with 41 queries by YEKTAWEB 4646