1. Predoi D, Crisan O, Jitianu A, Valsangiacom MC, Raileanu M, Crisan M, et al. Iron oxide in a silica matrix prepared by the sol gel method. Thin Sol Film 2007; 515: 6319-23. doi. 10.1016/j.tsf.2006.11.148 2. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Del Rev2012; 64:61-71. doi. 10.1016/S0169-409X(02)00228-4 3. Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Del Rev 2010; 62: 284-304. doi. 10.1016/j.addr.2009.11.002 4. Manuel A, Rodrigo FP, Ricardo Ibarra M, Jesus S. Magnetic nanoparticles for drug delivery. Nanotoday 2007; 2: 22-32. doi.10.1016/S1748-0132(07)70084-1 5. Baniasadi M, Tajabadi M, Nourbakhsh M, Kamali M. Synthesis and characterization of core-shell nanostructure containing super paramagnetic magnetite and PAMAM. Dendrimers 2014; 8: 51-63. 6. Rajendran SP, Sengodan K. Synthesis and characterization of zinc oxide and iron oxide nanoparticles using Sesbania grandiflora leaf extract as reducing agent. J Nanosci 2017; 2017: 1-7. doi. 10.1155/2017/8348507 7. Sivakumar D, Mohamed Rafi M, Sathyaseelan B, Prem Nazeer K, Ayisha Begam A. Synthesis and characterization of superparamagnetic Iron Oxide nanoparticles stabilized by glucose and fructose and sucrose. Int J Nano Dim 2017; 8: 257-64. 8. Wei Y, Han B, Hu X, Lin Y, Wang X, Deng X. Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties. Procedia Engineering 2012; 27: 632-637. doi. 10.1016/j.proeng.2011.12.498 9. Ozturk Atay N, Akgol S, Arısoy M, Denizli A. Reversible adsorption of lipase on novel hydrophobic nanospheres. Sep Purif Technol 2007; 58: 83-90. doi. 10.1016/j.seppur.2007.07.037 10. Palanikumar L, Ramasamy S, Hariharan G, Balachandran C. Influence of particle size of nano zinc oxide on the controlled delivery of Amoxicillin. Appl Nanosci 2013; 3 441-51. 11. Saqib S, Munis MFH, Zaman W, Ullah F, Shah SN, Ayaz A, et al. Synthesis characterization and use of iron oxide nano particles for antibacterial activity. Microsc Res Tech 2019; 82:415-20. doi.10.1002/jemt.23182 12. Anupam R, Onur B, Sudip S, Amit Kumar M, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule nanoparticle organizations targeting antimicrobial activity. Rsc Adv2019; 9: 2673-2702. doi. 10.1039/C8RA08982E 13. Karpagavinayagam P, Vedhi C. Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum 2019; 160: 286-92. doi. 10.1016/j.vacuum.2018.11.043 14. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomate 2008; 4:707-16. doi. 10.1016/j.actbio.2007.11.006 15. Sepehri Z, Hassanshahian M, Shahi Z, Nasiri A, Baigi S. Antibacterial Effect of Ethanol Extract of Camellia Sinensis L Against Escherichia Coli. Asian Pac J Microbiol Res2014; 2:6-8. 16. Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007; 42: 321-324. doi. 10.1016/j.ymeth.2007.01.006 17. Qasim Sh, Zafar A, Saqib Saif M, Zeeshan A,Nazar M, Waqas M, et al. Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. J Photochem Photobiol Biol2020; 204: 111784. doi. 10.1016 /j.jphotobiol .2020.111784 18. Yuvakkumar R, Hong SI. Green synthesis of spinel magnetite iron oxide nanoparticles. Adv Mate Res 2014; 1051: 39-42. doi.10.4028/www.scientific.net/AMR.1051.39 19. Yulizar Y, Ariyanta HA, Abduracman L. Green synthesis of gold nanoparticles using aqueous garlic Allium sativum L. extract and its interaction study with melamine. Bull Chem Reac Eng Catal 2017; 12: 212-218. doi.10.9767/bcrec.12.2.770.212-218 20. Abdullah JAA, Salah Eddine L, Abderrhmane B, Alonsogonzalez M, Guerrero A, Romero A. Green synthesis and characterization of iron oxide nanoparticles by pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sus Chem Pharm 2020; 17:100280. doi.10.1016/j.scp.2020.100280 21. Sivakumar D, Mohamedrafi M, Sathyaseelan B, Premnazeer KM, Meeranayisha BA. Synthesis and characterization of superparamagnetic iron oxide nanoparticles stabilized by Glucose and fructose and sucrose. Int J Nano Dim 2017; 8: 257-64. 22. Viju Kumar VG, Ananthu AP. Green synthesis and characterization of iron oxide nanoparticles using phyllanthus niruri extract. Orien J Chem 2018; 34: 2583-9. doi. 10.13005 /ojc/34054 23. Palanikumar L, Ramasamy S, Hariharan G, Balachandran C. Influence of particle size of nano zinc oxide on the controlled delivery of Amoxicillin. Appl Nanosci2013; 3:441-51. 24. Djeussi DE, Noumedem JAK, Seukep JA, Fankam AG, Voukeng IK, Tankeo SB, et al. Antibacterial activities of selected edible plants extracts against multidrug resistant Gram-negative bacteria. BMC Comple Alt Med 2013; 13:164. 25. Leisha MA , Stephen JW , Michael K , Yekaterina IB, Antonio CR , Nathan JW, et al. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J Nanobiotechnol 2020; 18: 35. 26. Buazar F, Baghlaninejazd MH, Badri M, Kashisaz M, Khaledinasab A, Kroshawi F. Facile one pot phytosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch 2016; 68:1-9. doi.10.1002/star.201500347 27. Castillohenriquez L, Alfaroaguilar K, Ugaldealvarez J, Vegafernandez L, Montes G, Baudrit JR. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 2020; 10: 1763. doi.10.3390/nano10091763 28. Charbgoo F, Ahmad MB, Darroudi M. Cerium oxide nanoparticles: green synthesis and biological applications. Int J Nanomed 2017; 12: 1401-13. doi.10.2147/IJN.S124855 29. Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? Appl Environmental Microbiol 2007; 6: 1712-20. doi. 10.1128/AEM.02218-06 30. Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. J Cont Rel 2012; 162: 45-55. doi.10.1016/j.jconrel.2012.05.051 31. Mohseni Sh, Mohamadi Sani A, Tavakoli M, Raoufi AM. Effect of extraction conditions on antioxidant activities of Echinops persicus. J Ess Oil Bear Plant 2017; 20:1633-44. doi.10.1080/0972060X.2017.1399088 32. Iavani S. Green synthesis of metal nanoparticles using plants. Green Chem 2011;13: 2638-50. doi.10.1039/C1GC15386B 33. Azizi A. Green synthesis of Fe3O4 nanoparticles and its application in preparation of Fe3O4/cellulose magnetic nanocomposit: a suitable proposal for drug delivery systems. J Inorg Org Polyme Mate 2020; 30: 3552-61. doi.10.1007/s10904-020-01500-1 34. Firoozi S, Jamzad M, Yari M. Biologically synthesized silver nanoparticles by aqueous extract of Satureja intermedia and the evaluation of total phenolic and flavonoid contents and antioxidant activity. J Nanostruc Chem 2016; 6: 357-64. doi.10.1007/s40097-016-0207-0 35. Sulaiman MG, Tawfeeq AT, Naji AS. Biosynthesis, characterization of magnetic ironoxide nanoparticles and evaluations of thecytotoxicity and DNA damage of human breastcarcinoma cell lines. Art Cell Nanomed Biotechnol 2017; 46:1215-1229. doi. 10.1080/21691401.2017.1366335 36. Bhattacharya P, Neogi S. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents. Mate Res Exp 2017; 4:095005. 37. Gabrielyan L, Trchounian A. Antibacterial activities of transient metals nanoparticles and membranous mechanisms of action. World J Microbiol Biotechnol 2019; 35:162. doi. 10.1007/s11274-019-2742-6 38. Santoshi V, Banu AS, Kurian GA. Synthesis, characterization and biological evaluation of iron oxide nanoparticles prepared by Desmodium gangeticum root aqueous extract. Int J Pharm Pharmaceut Sci 2015; 7:75-80. 39.
|