[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 28, Issue 5 (12-2020) ::
Journal of Ilam University of Medical Sciences 2020, 28(5): 1-10 Back to browse issues page
Experimental Investigation of Ki67, POU5F1, and ZBTB16 Expression in the Pig and Mouse Testicular Cells using Immunocytochemistry and RT-PCR
Hossein Azizi * 1, Amirreza Niazi Tabar2, Atiyeh Mohammadi2
1- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran , hosseinazizi1358@gmail.com
2- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
Abstract:   (1978 Views)
Introduction: Spermatogonial Stem Cells (SSC) are the originators and beginning points of the spermatogenesis process. Moreover, they are considered the only stem cells in the body that could transfer genetic information to the next generation through gametogenesis. This study aimed to investigate the potency and power of SSC under in vitro and in vivo conditions.
Materials & Methods:  Enzymatic digestion technique was utilized to extract the spermatogonial cells of the pig and mouse's testis. They were then cultured in an environment containing FGF, EGF, GDNF, and a feeder layer of STO.  For immunocytochemistry and RT-PCR analysis, Ki67, POU5F1, and ZBTB16 markers were used to evaluate the resulted colonies. Ethics code: Ir.ausmt.rec.1398.03.07
Findings: The nature of the SSC resulted after separation and culture was proved through measures, such as cluster growth of the colonies in the culture medium, Ki67 marker expression in the immunocytochemistry review which showed the duplication ability, and the morphological criteria observed by an electron microscope. Moreover, the comparative expression of POU5F1 and ZBTB16 markers in the embryonic stem cells, SSC, and Sertoli cells within the seminiferous tubules of the mouse was analyzed by RT-PCR.
Discussions & Conclusions: This experimental study investigated the expression of Ki67, POU5F1, and ZBTB16 in the seminiferous tubules and special cytological features of SCC. The findings are beneficial for future advanced studies in reproductive biology fields.
Keywords: Cytology, Mouse embryonic stem cells, Pluripotent stem cells, Pou5f1 protein, Zbtb16
Full-Text [PDF 961 kb]   (719 Downloads)    
Type of Study: Research | Subject: biotechnolohgy
Received: 2019/12/23 | Accepted: 2020/05/30 | Published: 2020/12/30
1. Kanbar M, Michele F, Wyns C. Cryostorage of testicular tissue and retransplantation of spermatogonial stem cells in the infertile Male. Best Pract Res Clin Endocrinol Metab2018; 4:124-9. doi. 10.1016/j.beem.2018.10.003.
2. Raymond K. Adhesion within the stem cell niches. Curr Opin Cell Biol2009;21: 623-9. doi. 10.1016/j.ceb.2009.05.004.
3. Wu X. Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules. Proce National Acad Sci2009. 106: 21672-21677. doi. 10.1073/pnas.0912432106.
4. Fayomi AP, Orwig KE. Spermatogonial stem cells and spermatogenesis in Mice monkeys and men. Stem Cell Res2018; 29: 207-14. doi. 10.1016/j.scr.2018.04.009.
5. Hayashi Y, Saitou M, Yamanaka S. Germline development from human pluripotent stem cells toward disease modeling of infertility. Fertil Steril 2012; 97: 1250-9. doi. 10.1016/j.fertnstert.2012.04.037.
6. Hermann BP. The mammalian spermatogenesis single cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep 2018; 25: 1650-1667. e8.
7. Silber S. Histology of the testis and spermatogenesis. Fund Male Infertil 2018;2: 29-37. doi. 10.1016/j.celrep.2018.10.026.
8. Sharma S, Hanukoglu A, Hanukoglu I. Localization of epithelial sodium channel ENaC and CFTR in the germinal epithelium of the testis sertoli cells and spermatozoa. J Mole Histol 2018; 49: 195-208. doi. 10.1007/s10735-018-9759-2.
9. Griswold MD. 50 years of spermatogenesis sertoli cells and their interactions with germ cells. Biol Rep 2018;99: 87-100. doi. 10.1093/biolre/ioy027.
10. Gerber J, Heinrich J, Brehm R. Blood-testis barrier and sertoli cell function lessons from SCCx43KO Mice. Reproduction 2016; 151:15-27. doi. 10.1530/REP-15-0366.
11. Mateus I. Glucose and glutamine handling in the sertoli cells of transgenic rats overexpressing regucalcin: plasticity towards lactate production. Sci Rep2018; 8: 10321. doi. 10.1038/s41598-018-28668-4.
12. Culty M, Papadopoulos V, Zirkin B. Leydig cells fetal to aged testes. Enc Rep2018;2: 39. doi. 10.1016/b978-0-12-801238-3.64360-x.
13. Lee WY. Characterization of male germ cell markers in canine testis. Anim Rep Sci 2017; 182: 1-8. doi. 10.1016/j.anireprosci.2017.01.002.
14. Azizi H, Skutella T, Shahverdi A. Generation of mouse spermatogonial stem cell colonies in a non-adherent culture. Cell 2017; 19: 238. doi. 10.22074/cellj.2016.4184.
15. Michele F, Vermeulen M, Wyns C. Fertility restoration with spermatogonial stem cells. Curr Opin Endocrinol Diabete Obesit2017; 24: 424-31. doi. 10.1097/med.0000000000000370.
16. Guo J, Cairns BR. Isolation and enrichment of spermatogonial stem cells from human testis tissues. Curr Pro Stem Cell Biol 2019; 3:77. doi. 10.1002/cpsc.77.
17. Oatley JM, Oatley MJ. Feeder free method for culture of bovine and porcine spermatogonial Stem Cells 2016; 3:231-6. doi. 10.1016/j.scr.2013.08.008.
18. Luo J, Megee S, Dobrinski I. Asymmetric distribution of UCH‐L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells. J Cell Physiol 2009; 220: 460-8. doi. 10.1002/jcp.21789.
19. Kokkinaki M. Age affects gene expression in mouse spermatogonial stem progenitor cells. Reproduction2010;139: 1011-20. doi. 10.1530/REP-09-0566.
20. Giassetti MI, Ciccarelli M, Oatley JM. Spermatogonial stem cell transplantation: insights and outlook for domestic animals. Annu Rev Anim Biosci2019; 7: 385-401. doi. 10.1146/annurev-animal-020518-115239.
21. Morimoto H. ROS amplification drives mouse spermatogonial stem cell self-renewal. Life Sci Allia2019; 2:121-6. doi. 10.26508/lsa.201900374.
22. Zhou H. The testicular soma of Tsc22d3 knockout mice supports spermatogenesis and germline transmission from spermatogonial stem cell lines upon transplantation. Genesis 2019;2:23295. doi. 10.1002/dvg.23295.
23. Moraveji SF. Optimizing methods for human testicular tissue cryopreservation and spermatogonial stem cell isolation. J Cell Biochem 2019;120: 613-21. doi. 10.1002/jcb.27419.
24. Kubota H, Avarbock MR, Brinster RL. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells. Biol Rep 2004;71: 722-31. doi. 10.1095/biolreprod.104.029207.
25. Valli H. Fluorescence and magnetic activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril 2014; 102: 566-80. doi. 10.1016/j.fertnstert.2014.04.036.
26. Panda RP, Barman H, Mohapatra C. Isolation of enriched carp spermatogonial stem cells from Labeo rohita testis for in vitro propagation. Theriogenology2011; 76: 241-51. doi. 10.1016/j.theriogenology.2011.01.031.
27. Grisanti L. Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation. Stem cells 2009; 27: 3043-52. doi. 10.1002/stem.206.
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azizi H, Niazi Tabar A, Mohammadi A. Experimental Investigation of Ki67, POU5F1, and ZBTB16 Expression in the Pig and Mouse Testicular Cells using Immunocytochemistry and RT-PCR. Journal of Ilam University of Medical Sciences 2020; 28 (5) :1-10
URL: http://sjimu.medilam.ac.ir/article-1-6238-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 5 (12-2020) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.15 seconds with 31 queries by YEKTAWEB 4541