[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations62733583
h-index2719
i10-index18478

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 30, Issue 5 (12-2022) ::
Journal of Ilam University of Medical Sciences 2022, 30(5): 40-50 Back to browse issues page
Effects of Biosynthesized Zinc and Copper Nanoparticles on Medicine Resistant Pathogenic Bacteria(Antibiotics)
Yasman sadat Nabipour1 , Arman Rostamzad * 2, Ardeshir Hesampour1 , Maryam Tajabadi1 , Salman Ahmadi asbghin3
1- Dept of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2- Dept of Biology, Faculty of Basic Sciences, Ilam University, Ilam, Iran , a.rostamzad@ilam.ac.ir
3- Dept of Biology, Faculty of Basic Sciences, Mazandaran University, Mazandaran, Iran
Abstract:   (736 Views)
Introduction: In this study, the antimicrobial activity of biologically synthesized zinc (Zn) and copper (Cu) nanoparticles was investigated on gram-positive and gram-negative bacteria, pathogens, and resistant and common nosocomial infections.
Material & Methods: Intially, zinc oxide and copper nanoparticles were synthesized using Xanthomonas campestris and Pseudomonas stutzeri bacteria, respectively. To investigate the effect of different concentrations of nanoparticles on bacteria using the macrodilution method, concentrations of 0.01, 0.1, 0.5, 1, and 1.5% of Zn and Cu nanoparticles (culture medium + nanoparticles) were prepared and were added to the respective bacteria at a concentration of 105 cell/ml. Containers containing treated media (bacteria + nanoparticles) and control media were placed in a shaker incubator. Afterward, the optical density (OD) of treatment and positive control and negative control media were determined.
(Ethic code: IR.ILAM.REC.1401.008)
Findings: The results of statistical analysis showed that Zn and Cu nanoparticles, at a concentration of 0.5%, were able to remove almost all (100%) Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus bacteria and were bacteriostatic at the concentration of 0.1%.
Discussion & Conclusion: The results obtained from the determination of antibacterial properties of nanoparticles showed a direct relationship between the concentration of nanoparticles and the percentage of bacterial removal.
 
Keywords: Acinetobacter baumannii, Bacteriostatic, Klebsiella pneumoniae, Macrodilution, Nanoparticle, Pseudomonas stutzeri, Xanthomonas campestris, Staphylococcus aureus
Full-Text [PDF 1233 kb]   (321 Downloads)    
Type of Study: Research | Subject: Microbiology
Received: 2021/09/9 | Accepted: 2022/05/16 | Published: 2022/12/6
References
1. Huang Y, Song J, Yang C, Long Y, Wu H . Scalable manufacturing and applications of nanofibers. Materials Today 2019; 28 :98-113doi:10.1016/j.mattod.2019.04.018.
2. Bayat M, Zargar M, Chudinova E, Astarkhanova T, Pakina E. In Vitro Evaluation of Antibacterial and Antifungal Activity of Biogenic Silver and Copper Nanoparticles ,The First Report of Applying Biogenic Nanoparticles against Pilidium concavum and Pestalotia sp. Fungi Molecules 2021;26: 5402. doi: 10.3390/molecules26175402.
3. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579 : 270–73. doi: 10.1038/s41586-020-2012-7.
4. Poloju M, Jayababu N, Ramana M, Reddy V. Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater Sci Eng 2018; 227: 61-67 doi:10.1016/j.mseb.2017.10.012.
5. Suleiman M, Mousa M, Hussein A. Wastewater disinfection by synthesized copper oxide nanoparticles stabilized with surfactant. J Mater Environ Sci 2015;6:1924-37. doi:10.1016/S0010-938X(99)00049-9.
6. Rezaie A, Mohajeri D, Zarkhah A, Nazeri M. Comparative assessment of Matricaria chamomilla and zinc oxide on healing of experimental skin wounds on rats. Ann Biol Res 2012;3:550-60.
7. Arslan K, Karahan O, Okus A, Unlu Y, Erilmaz M, Serden A, et al. Comparison of topical zinc oxide and silver sulfadiazine inburn wounds: an experimental study. Ulus Travma Acil Cerrahi Derg 2012;18 :376-83.
8. Shaffiey SF, Shapoori M, Bozorgnia A, Ahmadi M. Synthesis and evaluation of bactericidal properties of CuO nanoparticles against Aeromonashydrophila. Nanomed J 2014 ;1:198-204.
9. Esposito EP, Cervoni M, Bernardo M, Crivaro V, Cuccurullo S, Imperi F, et al. Molecular epidemiology and virulence profiles of colistin-resistant Klebsiella pneumoniae blood isolates from the hospital agency “Ospedale dei Colli,” Naples, Italy. Front Microbiol 2018 ;9:1463. doi:10.3389/fmicb.2018.01463.
10. Walter J, Haller S, Quinten C, Kärki T, Zacher B, Eckmanns T, et al. Healthcareassociated pneumonia in acute care hospitals in European :union:/European Economic Area countries: an analysis of data from a point prevalence survey. Euro Surveill 2018; 23:1700843.doi:10.2807/1560-7917.ES.2018.23.32.1700843.
11. Saleh NM, Hesham MS, Amin MA, Samir Mohamed R. Acquisition of Colistin Resistance Links Cell Membrane Thickness Alteration with a Point Mutation in the lpxD Gene in Acinetobacter Baumannii. Antibiotics 2020; 9, 164. doi: 10.3390/antibiotics9040164.
12. Wang X, Qin LJ. A review on Acinetobacter Baumannii. J Acute Dis 2019; 8: 16-20.doi:10.4103/2221- 6189.250373.
13. Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, et al. Biology of Acinetobacter Baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. Front Cell Infect Microbiol 2017;7:55. doi: 10.3389/fcimb.2017.00055.
14. Karyne R, Curty Lechuga G, Almeida Souza AL, Rangel da Silva Carvalho JP, Simões Villas Bôas MH, et al . Pan-Drug Resistant Acinetobacter Baumannii, but Not Other
15. Strains, Are Resistant to the Bee Venom Peptide Mellitin. Antibiotics 2020; 9:178.doi: 10.3390/antibiotics9040178.
16. Da Silva GJ, Domingues S. Interplay between Colistin Resistance, Virulence and Fitness in Acinetobacter Baumannii. Antibiotics 2017; 6: 28. doi:10.3390/antibiotics6040028.
17. World Health Organization (WHO). WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; WHO, 2017: Geneva, Switzerland .
18. Hoang Quoc C, Nguyen Thi Phuong T, Nguyen Duc H, Tran Le T, Tran Thi Thu H, Nguyen Tuan S, et al . Carbapenemase Genes and Multidrug Resistance of Acinetobacter Baumannii: A Cross Sectional Study of Patients with Pneumonia in Southern Vietnam. Antibiotics 2019;8: 148. doi:10.3390/antibiotics8030148.
19. Mairi A, Touati A, Lavigne JP. Methicillin-Resistant Staphylococcus aureus ST80 Clone: a systematic review. Toxins 2020; 12:119. doi: 10.3390/toxins12020119.
20. Galar A, Weil AA, Dudzinski DM, Muñoz P, Siedner MJ. Methicillin-resistant Staphylococcus aureus prosthetic valve endocarditis: patho-physiology, epidemiology, clinical presentation, diagnosis, and management. Clin Microbiol Rev 2019; 32: e00041-18.doi: 10.1128/CMR.00041-18.
21. Shrivastava S, Jyung w, Lungue M. Charac-terization of Enhanced Antibacterial Effects ofNano Silver Nano Particles. J Nanotech 2010; 25:103-125. doi: 10.1088/0957-4484/18/22/ 225103.
22. Wen-Ru Li. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli .Appl Microbiol Biotechnol 2010;85:1115-22. doi: 10.1007/s00253-009-2159-5.
23. Amanda S, Mohammad F, John J, SchlZner D, Syed A. Metal-based nanoparticles and their toxicity assessment. J Nanomed Nanobiotechnol 2010; 2: 544-68. doi:10.1002/wnan.103.
24. Lara HH, Ayala-Núñez NV, Ixtepan Turrent L, et al. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 2010;26, 615-21. doi:10.1007/s11274-009-0211-3.
25. Guangyin Lei. Synthesis of Nano-Silver Colloids and Their Anti Microbial Effects. Blacksburg Virginia 2007;8:72-78.
26. Hu TL, Hwa JZ, Chang WF. Anti-bacterial study using nano silver-doped high density polyethylene pipe. Sustainable Environ 2012; 22: 153-58.doi:10.1080/27658511.2022.2118654.
27. Dutta RK, Nenavathu BP, et al. Studies On Antibacterial Activity Of Zno Nanoparticles By ROS Induced Lipid Peroxidation. Colloids Surf B Biointerfaces 2012;94:143-50. doi:10.1016/j.colsurfb.2012.01.046
28. Poloju M, Jayababu N, Ramana Reddy M.V. Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater Sci Eng 2018; 227: 61-7. doi:10.1016/j.mseb.2017.10.012.
29. Torabi zarchi M, Mirhosseini M. Investigation of Combination Effect of Magnesium Oxide and Iron Oxide Nanoparticles on the Growth And Morphology of the Bacteria Staphylococcus Aureus and Escherichia Coli in Juice. J Shahid Sadoughi Uni Med Sci 2017; 24: 924-37.
30. Prabhu YT, Rao KV, Kumara BS, Sai kumar VS, Pavani T. Synthesis of Fe 3 O 4 nanoparticles and its antibacterial application. Int Nano Lett 2015; 5: 85- 92. doi: 10.1007/s40089-015-0141-z.
31. Mahdy SA, Raheed QJ, Kalaichelvan PT. Antimicrobial activity of zero-valent iron nanoparticles. Int J Modern Eng Res Tech 2012; 2: 578 -81.
32. Jin SE, Jin HE. Antimicrobial Activity of Zinc Oxide Nano/Microparticles and Their Combinations against Pathogenic Microorganisms for Biomedical Applications. From Physico-chemical Characteristics to Pharmacological Aspects. Nanomaterials 2021;11, 263. doi: 10.3390/nano110 20263.
33. Sharmin S, Rahaman MM, Sarkar C, Atolani O, Islam MT, Adeyemi OS. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 2021;13;7: e06456. doi: 10.1016/j.heliyon.2021.e06456.
34. Naradala J, Allam A, Tumu VR, Rajaboina RK. Antibacterial Activity of Copper Nanoparticles Synthesized by Bambusa arundinacea Leaves Extract. Biointerface Res Appl Chem 2022; 12:1230 -36.doi:10.33263/ BRIAC121.12301236.
35. Saleh NM, Hesham MS, Amin MA, Samir Mohamed R. Acquisition of Colistin Resistance Links Cell Membrane Thickness Alteration with a Point Mutation in the lpxD Gene in Acinetobacter Baumannii. Antibiotics 2020; 9:164. doi: 10.3390/antibiotics9040164.
36. Karyne R, Curty Lechuga G, Almeida Souza AL, Rangel da Silva Carvalho JP, Simões Villas Bôas MH, De Simone SG. Pan-Drug Resistant Acinetobacter Baumannii, but Not Other Strains,Are Resistant to the Bee Venom Peptide Mellitin. Antibiotics 2020;9: 178. doi:10.3390/ antibiotics9040178.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.ILAM.REC.1401.008


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nabipour Y S, Rostamzad A, Hesampour A, tajabadi M, Ahmadi asbghin S. Effects of Biosynthesized Zinc and Copper Nanoparticles on Medicine Resistant Pathogenic Bacteria(Antibiotics). J. Ilam Uni. Med. Sci. 2022; 30 (5) :40-50
URL: http://sjimu.medilam.ac.ir/article-1-7273-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 30, Issue 5 (12-2022) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.16 seconds with 41 queries by YEKTAWEB 4643