1. Nikjoo H, Taleei R, Liamsuwan T, Liljequist D, Emfietzoglou D. Perspectives in radiation biophysics from radiation track structure simulation to mechanistic models of DNA damage and repair. Rad Phys Chem 2016;128:3-10. doi.10.1016/j.radphyschem.2016.05.005 2. Balagurumoorthy P, Xu X, Wang K, Adelstein SJ, Kassis AI. Effect of distance between decaying 125I and DNA on auger electron induced double strand break yield. Int J Rad Biol 2012;88:998-1008. doi.10.3109/09553002.2012.706360 3. Piroozfar B, Raisali G, Alirezapour B, Mirzaii M. The effect of 111In radionuclide distance and auger electron energy on direct induction of DNA double strand breaks a Monte Carlo study using Geant4 toolkit. Int J Rad Biol 2018;94:385-93. doi:10.1080/09553002.2018.1440329 4. Mokari M, Alamatsaz MH, Moeini H, Babaeibrojeny AA, Taleei R. Track structure simulation of low energy electron damage to DNA using Geant4 DNA. Biomed Phys Eng Exp 2018;4: 65009. 5. Francis Z, Incerti S, Karamitros M, Tran H, Villagrasa C. Stopping power and ranges of electrons, protons and alpha particles in liquid water using the Geant4 DNA package. Nucl Ins Meth Phys Res Sec Mate At. 2011;269:2307-11. doi.10.1016/j.nimb.2011.02.031 6. Freudenberg R, Kotzerke J. Cellular dosimetry using the Geant4 Monte Carlo toolkit. J Nucl Med2010;51:1488-9. 7. Leaf nosed bat. Encyclopedia britannica. 5th ed. Sunders Publication. 2009.P.231-9. 8. Tajik M, Rozatian AS, Semsarha F. Simulation of ultrasoft X rays induced DNA damage using the Geant4 Monte Carlo toolkit. Nucl Ins Meth Phys Res Sec Mate At.2015;342:258-65. doi.10.1016/j.nimb.2014.10.023 9. Friedland W, Dingfelder M, Kundrat P, Jacob P. Track structures DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC. Mut Res Fund Mole Mech Mut 2011;711:28-40. doi.10.1016/j.mrfmmm.2011.01.003 10. Nikjoo H, Uehara S, Emfietzoglou D, Cucinotta F. Track structure codes in radiation research. Rad Meas2006;41:1052-74. doi.10.1016/j.radmeas.2006.02.001 11. Wilson WE, Nikjoo H. A Monte Carlo code for positive ion track simulation. Rad Environ Biophys1999;38:97-104. doi.10.1007/s004110050144 12. Wälzlein C, Scifoni E, Kramer M, Durante M. Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons. Phys Med Biol2014;59:1441. 13. Plante I, Cucinotta FA. Multiple CPU computing the example of the code RITRACKS. Int Meet Comp Int Meth Bioinfo Bios 2012;2:123-8. 14. Uehara S, Nikjoo H, Goodhead D. Cross sections for water vapour for the Monte Carlo electron track structure code from 10 eV to the MeV region. Phys Med Biol1993;38:1841. 15. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, et al. Geant4 a simulation toolkit. Nucl Ins Meth Phys Res Sec Equ 2003;50:250-303. doi.10.1016/S0168-9002(03)01368-8 16. Lampe N, Karamitros M, Breton V, Brown JMC, Kyriakou I, Sakata D, et al. Mechanistic DNA damage simulations in Geant4 DNA part 1 a parameter study in a simplified geometry. Phys Med 2018;48:135-45. doi.10.1016/j.ejmp.2018.02.011 17. Sakata D, Lampe N, Karamitros M, Kyriakou I, Belov O, Bernal MA, et al. Evaluation of early radiation DNA damage in a fractal cell nucleus model using Geant4 DNA. Phys Med 2019;62:152-7. doi.10.1016/j.ejmp.2019.04.010 18. Incerti S, Kyriakou I, Bernal M, Bordage M, Francis Z, Guatelli S, et al. Geant4 DNA example applications for track structure simulations in liquid water a report from the Geant4 DNA Project. Med Phys 2018;45:722-39. doi.10.1002/mp.13048 19. Bernal MA, Bordage MC, Brown JMC, Davidkova M, Delage E, El Bitar Z, et al. Track structure modeling in liquid water: A review of the Geant4 DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. Phys Med 2015;31:861-74. 20. Semsarha F, Goliaei B, Raisali G, Khalafi H, Mirzakhanian L. An investigation on the radiation sensitivity of DNA conformations to 60Co gamma rays by using Geant4 toolkit. Nucl Ins Meth Phys Res Sec Int Mate At2014;323:75-81. doi.10.1016/j.nimb.2014.01.002 21. Chauvie S, Francis Z, Guatelli S, Incerti S, Mascialino B, Montarou G, et al. Monte Carlo simulation of interactions of radiation with biological systems at the cellular and DNA levels. Phys Med 2006;3:72-6. 22. Tajik M, Rozatian AS, Semsarha F. Calculation of direct effects of 60Co gamma rays on the different DNA structural levels a simulation study using the Geant4 DNA toolkit. Nucl Ins Meth Phys Res Sec Int Mate At2015;346:53-60. doi.10.1016/j.nimb.2015.01.042 23. Incerti S, Douglass M, Penfold S, Guatelli S, Bezak E. Review of Geant4 DNA applications for micro and nanoscale simulations. Phys Med 2016;32:1187-200. doi:10.1016/j.ejmp.2016.09.007 24. Kyriakou I, Incerti S, Francis Z. Technical Note improvements in geant4 energy loss model and the effect on low-energy electron transport in liquid water. Med Phys 2015;42:3870-6. doi.10.1118/1.4921613 25. Howell RW. Radiation spectra for Auger electron emitting radionuclides report No two of AAPM nuclear medicine task group no six. Med Phys 1992;19:1371-83. doi. 10.1118/1.596927 26. Pomplun E. A new DNA target model for track structure calculations and its first application to i-125 Auger electrons. Int J Rad Biol 1991;59:625-42. doi.10.1080/09553009114550561 27. Pomplun E. 123I calculation of the Auger electron spectrum and assessment of the strand breakage efficiency. Biophys Am Phys Med Sym Proce1992; 8:253-8. Doi.10.1080/09553009114550561 28. Nikjoo H, Emfietzoglou D, Liamsuwan T, Taleei R, Liljequist D, Uehara S. Radiation track DNA damage and response a review. Rep Prog Phys Soc 2016;79:116601. 29. Humm JL, Charlton DE. A new calculational method to assess the therapeutic potential of auger electron emission. Int J Rad Oncol Biol Phys 1989;17:351-60. doi.10.1016/0360-3016(89)90450-1 30. Raisali G, Mirzakhanian L, Masoudi SF, Semsarha F. Calculation of DNA strand breaks due to direct and indirect effects of Auger electrons from incorporated 123I and 125I radionuclides using the Geant4 computer code. Int J Rad Biol 2013;89:57-64. doi.10.3109/09553002.2012.715785
|