[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2020
Citations69623578
h-index2919
i10-index20179

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Search published articles ::
Showing 1 results for Motazedi

Razieh Motazedi, Somayeh Rahaiee, Mahboobeh Zare,
Volume 28, Issue 4 (10-2020)
Abstract

Introduction: Attention to the biosynthesis of nanoparticles (NPs) has been increased recently since they are cost-effective, eco-friendly, and potential alternatives to chemical and physical methods. This study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using an intracellular extract of Saccharomyces cerevisiae. Moreover, it was attempted to evaluate their antibacterial and antioxidant effects.
 
Materials & Methods: After the preparation and identification of the physical characteristics of the ZnO NPs, their antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Ability of Plasma (FRAP). Moreover, the antibacterial activity of NPs was tested against Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative bacteria (Escherichia coli) using a disc diffusion method. Ethics code: IR.ausmt.rec.1398.11.33
Findings: The results showed that the synthesized NPs had a spherical shape, and their diameter size was < 30 nm. A good absorption at 370 nm confirmed the presence of ZnO NPs. These NPs depicted an improved antibacterial activity against S. aureus. Moreover, they showed concentration-dependent antioxidant activity in both DPPH and FRAP.
 
Discussions & Conclusions: The results indicated that the biosynthesized ZnO NPs had antibacterial and antioxidant activities. This suggests that ZnO NPs can be used in food packaging and cosmetic products. In addition, they can be utilized as an alternative to synthetic antibiotics. However, further studies are required to be conducted in this regard.

Page 1 from 1     

مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.24 seconds with 29 queries by YEKTAWEB 4701