[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2020
Citations69073535
h-index2919
i10-index19978

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Search published articles ::
Showing 1 results for Monajjemi

Marziyeh Choupani, Afshar Alihosseini, Majid Monajjemi, Hossein Sakhaeinia,
Volume 30, Issue 4 (10-2022)
Abstract

Introduction: Genistein is an isoflavone that is used as a drug to stop various types of cancer cells, such as breast and prostate cancer. This study aimed to perform molecular simulation of the adsorption process of genistein molecule on pure graphene and genistein on graphene doped with metal atoms (Ni, Ti, Se, and Cr) to increase the adsorption efficiency of the genistein-graphene molecule.
Material & Methods: In this study, a graphene plate (dimensions: 4 × 4) was placed next to the genistein molecule at a distance of 1 to 5 angstroms, using HyperChem Professional software (version 8.0.10). The density functional theory (DFT) was used to simulate the adsorption of Genistein-graphene, and the Gaussian software (version 09), hybrid method (B3LYP), and the 6-31G base set were used to optimally design the molecular structure.
Findings: Based on the obtained results, the adsorption energy of genistein-graphene doped with metal atoms Ni, Se, Ti, and Cr was determined at 318.154, 954.080, 972.745, and 1236.149 kcal/mole, respectively, and the energy gap of genistein-graphene doped with Ni, Ti, Se, and Cr was estimated to be 85.422, 92.476, 102.396, and 94.694 kcal/mol, respectively.
Discussion & Conclusion: The results of this study show that the presence of graphene-doped Ni atoms increases the electron charge density. The energy gap of genistein-graphene doped with Ni atoms indicates reactivity and high electron charge density of this compound and can be used as a suitable option to increase the uptake efficiency of the genistein drug molecule.
 

Page 1 from 1     

مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.31 seconds with 29 queries by YEKTAWEB 4701