1. de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes MdS, Filho AKDB, do Nascimento FRF, et al. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol 2018; 3:1351. doi: 10.3389/fmicb.2018.01351. 2. Mohamed AA, Lu XL, Mounmin FA. Diagnosis and treatment of esophageal candidiasis: current updates. Can J Gastroenterol Hepatol 2019; 1:3585136. doi: 10.1155/2019/3585136. 3. García-Agudo L, Rodríguez-Iglesias M. Nosocomial candiduria in the elderly: microbiological diagnosis. Mycopathologia 2017; 1:1-6. doi: 10.1007/s11046-017-0232-7. 4. Pemán J, Ruiz-Gaitán A. Candidemia from urinary tract source: the challenge of candiduria. Hosp Pract 2018; 46:243-5. doi: 10.1080/21548331.2018.1538623. 5. de Paula SB, Bartelli TF, Di Raimo V, Santos JP, Morey AT, Bosini MA, et al. Effect of eugenol on cell surface hydrophobicity, adhesion, and biofilm of Candida tropicalis and Candida dubliniensis isolated from oral cavity of HIV-infected patients. Evidence-Based Alt Med 2014; 2014:505204. doi:10.1155/2014/505204. 6. Li WS, Chen YC, Kuo SF, Chen FJ, Lee CH. The impact of biofilm formation on the persistence of candidemia. Front Microbiol 2018; 4:1196. doi: 10.3389/fmicb.2018.01196. 7. Taff HT, Mitchell KF, Edward JA, Andes DR. Mechanisms of Candida biofilm drug resistance. Future Microbiol 2013; 8:1325-37. doi: 10.2217/fmb.13.101. 8. Ellepola AN, Samaranayake LP. Investigative methods for studying the adhesion and cell surface hydrophobicity of andida species: an overview. Microb Ecol Health Dis 2001; 13:46-54. doi: 10.1080/089106001750071708. 9. Clotz SA, Drutz DJ, Zajic JE. Factors governing adherence of Candida species to plastic surfaces. Infect Immun 1985; 50:97-101. doi: 10.1128/iai.50.1.97-101.1985. 10. Panagoda GJ, Ellepola ANB, Samaranayake LP. Adhesion of Candida parapsilosis to epithelial and acrylic surfaces corre lates with cell surface hydrophobicity. Mycoses 2001; 44:29-35. doi: 10.1046/j.1439-0507.2001.00611. x. 11. Pinheiro PF, Menini LAP, Bernardes PC, Saraiva SRH, Carneiro JWM, Costa AV, et al. Semisynthetic phenol derivatives obtained from natural phenols: antimicrobial activity and molecular properties. J Agri Food Chem 2018; 66:323-30. doi: 10.1021/acs.jafc.7b04418. 12. Khan MS, Ahmad I. Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against Candida albicans biofilms. J Antimicrob Chemother 2012; 67:618-21. doi: 10.1093/jac/dkr512. 13. Kubo I, Fujita KI, Nihei KI. Antimicrobial activity of anethole and related compounds from aniseed. J Sci Food Agri 2008; 88:242-7. doi: 10.1002/jsfa.3079. 14. Clinical and Laboratory Standards Institute (CLSI), Reference Method for Disk Diffusion Antifungal Susceptibility Testing of Yeasts, Approved Guidelinesecond Edition. CLSI document M44-A2, Clinical and Laboratory StandardsInstitute, Wayne PA, 2009. 15. Clinical and Laboratory Standards Institute (CLSI), Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Guidelinesecond Edition. CLSI document M27-A3, Clinical and Laboratory Standards Institute, Wayne PA, 2008. 16. Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 2008; 3:1494-500. doi: 10.1038/nport.2008.141. 17. Álvarez M, Rodríguez A, Bermúdez E, Roncero E, Andrade MJ. Development of a methodology for estimating the ergosterol in meat product-borne toxigenic moulds to evaluate antifungal agents. Foods 2021; 10:438. doi: 10.3390/foods10020438. 18. Anil S, Ellepola ANB, Samaranayake LP. The impact of chlorhexidine gluconate on the relative cell surface hydrophobicity of oral Candida albicans. Oral Dis 2001; 7:119-22. 19. Kucharíková S, Neirinck B, Sharma N, Vleugels J, Lagrou K, Van Dijck P. In vivo Candida glabrata biofilm development on foreign bodies in a rat subcutaneous model. J Antimicrob Chemother 2015; 70:846-56. doi: 10.1093/jac/dku447. 20. Hitkova HY, Georgieva DS, Hristova PM, Marinova-Bulgaranova TV, Kirilov Borisov B, Georgiev Popov V. Antifungal susceptibility of non-albicans Candida species in a tertiary care hospital, Bulgaria. Jundishapur J Microbiol 2020;13: e101767. doi: 10.5812/jjm.101767. 21. Razzaghi-Abyaneh M, Sadeghi G, Zeinali E, Alirezaee M, Shams-Ghahfarokhi M, Amani A, et al. Species distribution and antifungal susceptibility of Candida spp. isolated from superficial candidiasis in outpatients in Iran. J Mycol Med 2014;24: e43-e50. doi: 10.1016/j.mycmed.2014.01.004. 22. Jain N, Kohli R, Cook E, Gialanella P, Chang T, Fries B. Biofilm formation by and antifungal susceptibility of Candida isolates from urine. Appl Environ Microbiol 2007; 73:1697-703. doi: 10.1128/AEM.02439-06. 23. d'Enfert C, Janbon G. Biofilm formation in Candida glabrata: What have we learnt from functional genomics approaches? FEMS yeast Res 2016; 16:111. doi: 10.1093/femsyr/fov111. 24. Fujita KI, Fujita T, Kubo I. Anethole, a potential antimicrobial synergist, converts a fungistatic dodecanol to a fungicidal agent. Phytother Res 2007; 21:47-51. doi: 10.1002/ptr.2016. 25. Mohammadzadeh F, Yahyaraeiyat R, Sharifzadeh A. Evaluation of the effect of anethole against dual biofilms of Candida albicans and Staphylococcus aureus in vitro. Mycoses 2020. 26. Vieira Priscila RN, de Morais, Selene M, Bezerra, Francisco HQ, Augusto TFP; Írvila R, et al. Chemical composition and antifungal activity of essential oils from Ocimum species. Industr Crops Prod 2014; 55:267-71. doi: 10.1016/j.indcrop.2014.02.032. 27. Dąbrowska M, Zielińska‐Bliźniewska H, Kwiatkowski P, Łopusiewicz Ł, Pruss A, Kostek M, et al. Inhibitory effect of eugenol and trans‐anethole alone and in combination with antifungal medicines on Candida albicans clinical isolates. Chem Biodivers 2021;18: e2000843. doi: 10.1002/cbdv.202000843. 28. Borghi E, Sciota R, Biassoni C, Cirasola D, Cappelletti L, Vizzini L, et al. Cell surface hydrophobicity: a predictor of biofilm production in Candida isolates? J Med Microbiol 2011; 60:689-90. doi: 10.1099/jmm.0.026898-0. 29. Silva-Dias A, Miranda IM, Branco J, Monteiro-Soares M, Pina-Vaz C, Rodrigues AG. Adhesion, biofilm formation, cell surface hydrophobicity, and antifungal planktonic susceptibility: relationship among Candida spp. Front Microbiol 2015;12:205. doi: 10.3389/fmicb.2015.00205. 30. de Paula SB, Bartelli TF, Di Raimo V, Santos JP, Morey AT, Bosini MA, et al. Effect of eugenol on cell surface hydrophobicity, adhesion, and biofilm of Candida tropicalis and Candida dubliniensis isolated from oral cavity of HIV-infected patients. Evid Based Complement Alternat Med 2014; 2014:505204. doi: 10.1155/2014/505204. 31. Khan MS, Ahmad I, Cameotra SS, Botha F. Sub-MICs of Carum copticum and Thymus vulgaris influence virulence factors and biofilm formation in Candida spp. BMC Complement Alternat Med 2014;14:1-14. doi: 10.1186/1472-6882-14-337. 32. Raut JS, Shinde RB, Chauhan NM, Karuppayil SM. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling 2013; 29:87-96. doi: 10.1080/08927014.2012.749398. 33. Samber N, Khan A, Varma A, Manzoor N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharma Biol 2015; 53:1496-504. doi: 10.3109/13880209.2014.989623. 34. Alizadeh F, Khodavandi A, Esfandyari S, Nouripour-Sisakht S. Analysis of ergosterol and gene expression profiles of sterol∆ 5, 6-desaturase (ERG3) and lanosterol 14α-demethylase (ERG11) in Candida albicans treated with carvacrol. J Herbmed Pharmacol 2018; 7:79-87. doi: 10.15171/jhp.2018.14. 35. Lone SA, Khan S, Ahmad A. Inhibition of ergosterol synthesis in Candida albicans by novel eugenol tosylate congeners targeting sterol 14α-demethylase (CYP51) enzyme. Arch Microbiol 2020; 202:711-26. doi: 10.1007/s00203-019-01781-2.
|