1. Gallahue DL, Ozmun JC, Goodway J. Understanding motor development infants children adolescents and adults. 1th ed. Mcgraw hill Boston Publication. 2006;P.73-99. 2. Payne VG, Isaacs LD. Human motor development a lifespan approach. 3 th ed. Routledge Publication. 2017;P.231-46. 3. Collins M. Genetics and sports. 2 th ed. Karger Med Sci Publication.2009;P.101-9. 4. Ahmetov II, Gavrilov DN, Astratenkova IV, Druzhevskaya AM, Malinin AV, Romanova EE, et al. The association of ACE andACTN3 and PPARA gene variants with strength phenotypes in middle school age children. J Physiol Sci 2013;63:79-85. doi. 10.1007/s12576-012-0233-8. 5. Bray MS, Hagberg JM, Perusse L, Rankinen T, Roth SM, Wolfarth B, et al. The human gene map for performance and health related fitness phenotypes the 2006-7. Med Sci Sport Exe2009;41:34-72. doi.10.1249/MSS.0b013e3181844179. 6. Williams AG, Day SH, Folland JP, Gohlke P, Dhamrait S, Montgomery HE. Circulating angiotensin converting enzyme activity is correlated with muscle strength. Med Sci Sport Exe 2005;37:944. 7. Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON, et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum Gene 2009;126:751. doi.10.1007/s00439-009-0728-4. 8. Pereira A, Costa AM, Leitao JC, Monteiro AM, Izquierdo M, Silva AJ, et al. The influence of ACE ID and ACTN3 R577X polymorphisms on lower-extremity function in older women in response to high speed power training. BMC Geriatr2013;13:131. 9. doi.10.1186/1471-2318-13-131. 10. Zehsaz F, Safabakhsh AH, Farhangi N, Keynezhad N, Monfaredan A, Ghahramani M. Do ACE and CKMM gene variations have potent effects on physical performance in inactive male adolescents? Mole Biol Rep2019;46:1835-43. 11. Santoro GF, Mello KD, Oliveira Netto ZC, Pfutzenreuter G, Bassan JC, Salgueirosa FDM. The influence of ace i/d gene polymorphism in amateur american football athletes in brazil. Rev Brasileira Med Esporte2019;25:460-3. doi.10.1590/1517-869220192506198909. 12. Scott RA, Moran C, Wilson RH, Onywera V, Boit MK, Goodwin WH, et al. No association between angiotensin converting enzyme gene variation and endurance athlete status in Kenyans. Comp Biochem Physiol Mole Int Physiol 2005;141:169-75. doi.10.1016/j.cbpb.2005.05.001. 13. Kim K, Ahn N, Cheun W, Byun J, Joo Y. Association of angiotensin converting enzyme I/D and α-actinin-3 R577X genotypes with growth factors and physical fitness in Korean children. Korean J Physiol Pharmacol 2015;19:131-9. doi.10.4196/kjpp.2015.19.2.131. 14. Coso J, Hiam D, Houweling P, Perez LM, Eynon N, Lucia A. More than a speed gene ACTN3 R577X genotype trainability muscle damage and the risk for injuries. European J Appl Physiol 2019;119:49-60. 15. doi.10.1007/s00421-018-4010-0. 16. Erskine RM, Williams AG, Jones DA, Stewart CE, Degens H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scandinavian J Med Sci Sport 2014;24:642-8. doi.10.1111/sms.12055 17. Yang R, Shen X, Wang Y, Voisin S, Cai G, Fu Y, et al. ACTN3 R577X gene variant is associated with muscle related phenotypes in elite Chinese sprint/power athletes. J Str Cond Res 2017;31:1107-15. 18. doi.10.1519/JSC.0000000000001558. 19. Moran CN, Vassilopoulos C, Tsiokanos A, Jamurtas AZ, Bailey ME, Montgomery HE, et al. The associations of ACE polymorphisms with physical, physiological and skill parameters in adolescents. European J Hum Gene 2006;14:332-9. 20. doi.10.1038/sj.ejhg.5201550 21. Zhang Q, Cao Y, Chen J, Shen J, Ke D, Wang X, et al. ACTN3 is associated with children’s physical fitness in Han Chinese. Mole Gene Genom2019;294:47-56. doi.10.1007/s00438-018-1485-7
|