[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 33, Issue 5 (11-2025) ::
Journal of Ilam University of Medical Sciences 2025, 33(5): 146-159 Back to browse issues page
Molecular and Anticancer Effects of β-Carotene on the Apoptotic Pathway via Regulation of Bax/Bcl-2 in MCF-7 Breast Cancer Cell Line
Amineh Majidi1 , Saeid Ghorbian *2 , Neda Roshanravan3
1- Dept of Biology, Ah.C, Islamic Azad University, Ahar, Iran
2- Dept of Biology, Ta.C, Islamic Azad University, Tabriz, Iran , ghorbian20@gmail.com
3- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
Abstract:   (33 Views)
Introduction:  Breast cancer stands out as the top cancer type and a major reason for cancer deaths in women around the world. New studies point to β-carotene having possible healing impacts on this cancer. This work focused on checking how β-carotene affects cell death through changes in BAX and BCL2 gene levels in the MCF-7 breast cancer cells.
Materials & Methods: We grew MCF-7 cells and exposed them to different amounts of β-carotene. To measure cell survival and damage, we used the MTT test. For cell growth checks, we applied the trypan blue exclusion approach. Once we pulled out RNA and made cDNA from it, we measured BAX and BCL2 levels with real-time PCR. This helped us look into the ways apoptosis works at a molecular level.
Results: Treatment with β-carotene cut down cell survival a lot, and it did so based on the dose given. It boosted BAX gene activity, lowered BCL2 activity, and triggered cell death in MCF-7 cells. Normal HFF-2 fibroblast cells showed no real damage or death from it. The impact on breast cancer cells depended on both dose and time passed. IC50 values differed a lot at 24 hours, 48 hours, and 72 hours, with p values under 0.01. Even small amounts of β-carotene started apoptosis in those MCF-7 cells.e started apoptosis in those MCF-7 cells.
Conclusion: β-carotene triggered cell death just in breast cancer cells, depending on dose and time. It barely harmed normal cells at all. This points to β-carotene working well as a treatment option for breast cancer down the line.
Keywords: Breast cancer, MCF-7 cell line, β-carotene, BAX, BCL2
Full-Text [PDF 1218 kb]   (20 Downloads)    
Type of Study: Research | Subject: Molecular Genetics
Received: 2025/07/26 | Accepted: 2025/10/5 | Published: 2025/11/26
References
1. Kim J, Harper A, McCormack V, Sung H, Houssami N, Morgan E, et al. Global patterns and trends in breast cancer incidence and mortality across 185 countries. Nat Med. 2025; 24:1-9. doi: 10.1038/s41591-025-03502-3.
2. Ziayifard Z, Abdolahi K, Zahedi R, Rahmanian S, Rahmanian K. A survey of the knowledge of the 20 year and older women on breast self-examination and mammography, southern Iran, 2009. Pars J Med Sci. 2022;10:49-56. doi:10.29252/jmj.10.2.49.
3. Xiong X, Zheng LW, Ding Y, Chen YF, Cai YW, Wang LP, et al. Breast cancer: pathogenesis and treatments. Signal Transduct Target Ther. 2025 ;10:49. doi: 10.1038/s41392-024-02108-4.
4. Provenzano E. Breast Pathology. InAtlas of Diagnosis and Management of Breast Disease. CRC Press. 2025;23: 66-82. doi:10.1201/9781003394785.
5. Zafar T, Naik AQ, Kumar M, Shrivastava VK. Epidemiology and risk factors of breast cancer. InBreast cancer: From bench to personalized medicine. Springer Nature. 2022;15 : 3-29. doi: 10.1007/978-981-19-0197-3_1.
6. Yarmand S, Atashi N, Kazemi I, Mahmoudi-Zadeh M, Yazdani S, Behzadi Nejad H, et al. Association of portfolio diet score with breast cancer risk: insights from a case-control analysis. BMC Cancer. 2025;25:274. doi: 10.1186/s12885-025-13634-x.
7. Mozafarinia M, Sasanfar B, Toorang F, Forbes SC, Salehi-Abargouei A, Zendehdel K. A large-scale case-control study on the association between dietary fat quality indices and risk of breast cancer. Sci Rep. 2025;15:27963. doi: 10.1038/s41598-025-12395-8.
8. Dewanjee S, Das S, Joardar S, Bhattacharjee S, Chakraborty P. Carotenoids as anticancer agents. InCarotenoids: structure and function in the human body. Springer . 2021;18: 475-512. doi:10.1007/978-3-030-46459-2_13.
9. Antunes A, Carmo F, Pinto S, Andrade N, Martel F. The anti-proliferative effect of β-carotene against a triple-negative breast cancer cell line is cancer cell-specific and JNK-dependent. PharmaNutrition. 2022;22:100320. doi:10.1016/j.phanu.2022.100320.
10. Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct. 2023;14:7799-824. doi: 10.1039/d3fo02330c.
11. Solano YJ, Everett MP, Dang KS, Abueg J, Kiser PD. Carotenoid cleavage enzymes evolved convergently to generate the visual chromophore. Nat Chem Biol. 2024;20:779-88. doi: 10.1038/s41589-024-01554-z.
12. Abrego-Guandique DM, Bonet ML, Caroleo MC, Cannataro R, Tucci P, Ribot J, et al. The effect of beta-carotene on cognitive function: a systematic review. Brain Sci. 2023;13:1468. doi: 10.3390/brainsci13101468.
13. Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct. 2023;14:7799-824. doi: 10.1039/d3fo02330c.
14. Ali HB. Nutraceuticals in Metabolism and Xenobiotics. InNutraceuticals: A New Millennium Approach for Preventive Medicine. Springer Nature Switzerland. 2024; 12: 41-88. doi: 10.1007/978-3-031-76481-3.
15. Saha N, Samuel M. Dietary xenobiotics and their role in immunomodulation. Food Sci Biotechnol. 2025;34:1805-17. doi: 10.1007/s10068-024-01752-4.
16. Singh SP, Sirbaiya AK, Rahman MH, Alves MS, Yupanqui CT, Amelia P, et al. Therapeutic Effects of Terpenoids in Breast Cancer. CRC Press. 2026; 114-132. doi:10.1201/9781003128779-10.
17. Zhang LX, Cooney RV, Bertram JS. Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: relationship to their cancer chemopreventive action. Carcinogenesis. 1991;12:2109-14. doi: 10.1093/carcin/12.11.2109.
18. Simon PW, Geoffriau E, Ellison S, Iorizzo M. Carrot carotenoid genetics and genomics. InThe carrot genome. Springer International. 2019; 9: 247-260. doi: 10.1007/978-3-030-03389-7_14.
19. Ciccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, Ricci G, et al. Dietary intake of carotenoids and their antioxidant and anti‐inflammatory effects in cardiovascular care. Mediators Inflamm. 2013;2013:782137. doi: 10.1155/2013/782137.
20. Ito Y, Kurata M, Suzuki K, Hamajima N, Hishida H, Aoki K. Cardiovascular disease mortality and serum carotenoid levels: a Japanese population-based follow-up study. J Epidemiol. 2006;16:154-60. doi: 10.2188/jea.16.154.
21. Tanito M. Reported evidence of vitamin E protection against cataract and glaucoma. Free Radic Biol Med. 2021, 1;177:100-19. doi: 10.1016/j.freeradbiomed.2021.10.027.
22. Fernández-Ríos A, Laso J, Aldaco R, Margallo M. Superfoods: A super impact on health and the environment? Curr Opin Environ Sci Health. 2023; 31:100410. doi:10.1016/j.coesh.2022.100410.
23. Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nature. 2023;24:732-48. doi: 10.1038/s41580-023-00629-4.
24. Croce CM, Vaux D, Strasser A, Opferman JT, Czabotar PE, Fesik SW. The BCL-2 protein family: from discovery to drug development. Cell Death Differ. 2025; 9:1-3. doi:10.1038/s41418-025-01481-z.
25. Baeza-Morales A, Medina-Garcia M, Martinez-Peinado P, Pascual-Garcia S, Pujalte-Satorre C, Lopez-Jaen AB, et al. The antitumour mechanisms of carotenoids: a comprehensive review. Antioxidants. 2024; 30;13:1060. doi:10.3390/antiox13091060.
26. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018;2018:pdb-rot095505. doi: 10.1101/pdb.prot095505.
27. Chazotte B. Labeling nuclear DNA using DAPI. Cold Spring Harb Protoc. 2011: 1;2011:pdb-rot5556. doi: 10.1101/pdb.prot5556.
28. Ortega ÁL, Mena S, Estrela JM. Oxidative and nitrosative stress in the metastatic microenvironment. Cancers. 2010;2:274-304. doi: 10.3390/cancers2020274.
29. Koklesova L, Liskova A, Samec M, Buhrmann C, Samuel SM, Varghese E, et al. Carotenoids in cancer apoptosis—the road from bench to bedside and back. Cancers. 2020: 26;12:2425.doi:10.3390/cancers12092425.
30. Cui Y, Lu Z, Bai L, Shi Z, Zhao WE, Zhao B. β-Carotene induces apoptosis and up-regulates peroxisome proliferator-activated receptor γ expression and reactive oxygen species production in MCF-7 cancer cells. Eur J Cancer. 2007;43:2590-601. doi:10.1016/j.ejca.2007.08.015.
31. Antunes A, Carmo F, Pinto S, Andrade N, Martel F. The anti-proliferative effect of β-carotene against a triple-negative breast cancer cell line is cancer cell-specific and JNK-dependent. PharmaNutrition. 2022;22:100320. doi.10.1016/j.phanu.2022.100320.
32. Shin J, Song MH, Oh JW, Keum YS, Saini RK. Pro-oxidant actions of carotenoids in triggering apoptosis of cancer cells: A review of emerging evidence. Antioxidants. 2020;9:532.doi: 10.3390/antiox9060532.
33. Vijay K, Sowmya PR, Arathi BP, Shilpa S, Shwetha HJ, Raju M, et al. Low-dose doxorubicin with carotenoids selectively alters redox status and upregulates oxidative stress-mediated apoptosis in breast cancer cells. Food Chem Toxicol. 2018;118:675-90. doi: 10.1016/j.fct.2018.06.027.
34. Elsayed MH, Shafaa MW, Abdalla MS, El-Khadragy MF, Moneim AE, Ramadan SS. Antitumor assessment of liposomal beta-carotene with tamoxifen against breast carcinoma cell line: an in vitro study. Biomolecules. 2025;15:486. doi: 10.3390/biom15040486.
35. Zhang X, Spiegelman D, Baglietto L, Bernstein L, Boggs DA, van den Brandt PA, et al. Carotenoid intakes and risk of breast cancer defined by estrogen receptor and progesterone receptor status: a pooled analysis of 18 prospective cohort studies. Am J Clin Nutr. 2012;95:1358-69. doi: 10.3945/ajcn.111.014415.
36. Aune D, Chan DS, Vieira AR, Rosenblatt DA, Vieira R, Greenwood DC, et al. Fruits, vegetables and breast cancer risk: a systematic review and meta-analysis of prospective studies. Breast Cancer Res Treat. 2012;134:479-93. doi: 10.1007/s10549-012-2118-1.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: --


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Majidi A, Ghorbian S, Roshanravan N. Molecular and Anticancer Effects of β-Carotene on the Apoptotic Pathway via Regulation of Bax/Bcl-2 in MCF-7 Breast Cancer Cell Line. J. Ilam Uni. Med. Sci. 2025; 33 (5) :146-159
URL: http://sjimu.medilam.ac.ir/article-1-8683-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 33, Issue 5 (11-2025) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.16 seconds with 39 queries by YEKTAWEB 4722