|
1. Jafarpour N, Nikpassand M, Faramarzi M. Conjugation of folic acid onto poly (acrylic acid-co-allylamine)-grafted mesoporous silica nanoparticles for controlled methotrexate delivery. J Drug Deliv Sci Technol. 2024; 96:105667. doi: 10.1016/j.jddst.2024.105667 2. Safarpour R, Pooresmaeil M, Namazi H. Folic acid functionalized Ag@MOF(Ag) decorated carboxymethyl starch nanoparticles as a new doxorubicin delivery system with inherent antibacterial activity. Int J Biol Macromol. 2024; 282:137096. doi: 10.1016/j.ijbiomac.2024.137096. 3. Aziz A, Sefidbakht Y, Rezaei S, et al. Doxorubicin-loaded, pH-sensitive Albumin Nanoparticles for Lung Cancer Cell Targeting. J Pharm Sci. 2022; 111: 1187-96. doi: 10.1016/j.xphs.2021.12.006. 4. Bakhshi V, Poursadegh H, Amini-Fazl MS, et al. Synthesis and characterization of bio-nanocomposite hydrogel beads based on magnetic hydroxyapatite and chitosan: a pH-sensitive drug delivery system for potential implantable anticancer platform. Polym Bull. 2024; 81: 7499-7518. doi: 10.1007/s00289-023-05072-1. 5. Renu K, Abilash V, PB TP, Arunachalam S. Molecular mechanism of doxorubicin-induced cardiomyopathy–An update. Eur J Pharmacol. 2018; 818:241-53. doi: 10.1016/j.ejphar.2017.10.043. 6. Jafari H, Namazi H. κ-carrageenan coated magnetic hydroxypropyl methylcellulose/chitosan nanoparticles as a pH-sensitive nanocarrier for efficient methotrexate release. Int J Biol Macromol. 2025; 322: 146750. doi: 10.1016/j.ijbiomac.2025.146750. 7. de Araújo Lopes SC, dos Santos Giuberti C, Rocha TGR, dos Santos Ferreira D, Leite EA, Oliveira MC. Cancer treatment—conventional and innovative approaches. IntechOpen Publication. 2013; P. 108-9. doi: 10.5772/55290. 8. Svenson S. Dendrimers as versatile platform in drug delivery applications. Eur J Pharm. 2009; 71:445-62. doi: 10.1016/j.ejpb.2008.09.023. 9. Sullivan CB, Porter RM, Evans CH, Ritter T, Shaw G, Barry F, et al. TNFα and IL-1β influence the differentiation and migration of murine MSCs independently of the NF-κB pathway. Stem Cell Res Ther. 2014; 5:1-13. doi: 10.1186/scrt492. 10. Namazi H, Zeyni V, Karimi S. A l-lysine-coated graphene oxide/magnetic hydroxyapatite/cubic metal-organic frameworks for targeted and pH-controlled release of doxorubicin to cancer cells. Mater Chem Phys. 2024; 325: 129781. doi: 10.1016/j.matchemphys.2024.129781. 11. Shi L, Xu Z, Wu G, Chen X, Huang Y, Wang Y, et al. Up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin J. BMC Cancer. 2017; 17:1-14. doi: 10.1016/j.matchemphys.2024.129781. 12. Birdsall TC. Therapeutic applications of taurine. Altern Med Rev. 1998; 3:128-36. Pmid: 9577248 13. Schaffer S, Azuma J, Takahashi K, Mozaffari M. Why is taurine cytoprotective? Adv Exp Med Biol. 2003; 526:307-21. doi: 10.1007/978-1-4615-0077-3_39. 14. Zahedipour F, Dalirfardouei R, Karimi G, Jamialahmadi K. Molecular mechanisms of anticancer effects of Glucosamine. Biomed Pharmacother. 2017; 95:1051-8. doi: 10.1016/j.biopha.2017.08.122. 15. Kianpour B, Salehi Z, Fatemi S. Highly enhanced loading quality of curcumin onto carboxylated folate graphene oxide. Sci Iran. 2018; 25:1384-94. doi: 10.24200/sci.2018.20328. 16. Fernandes MTC, Garcia RBR, Leite CAP, Kawachi EY. The competing effect of ammonia in the synthesis of iron oxide/silica nanoparticles in microemulsion/sol–gel system. Colloids Surf. A Physicochem Eng Asp. 2013; 422:136-42. doi: 10.1016/j.colsurfa.2013.01.025. 17. Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev. 2013; 65:1899-920. doi: 10.1016/j.addr.2013.07.006. 18. Erbani SN, Madanchi H, Rostamian M, Rahmati S, Akbar Shabani A. First report of antifungal activity of CecropinA-Magenin2 (CE-MA) hybrid peptide and its truncated derivatives. Biochem Biophys Res Commun. 2021; 549:157-63. doi: 10.1016/j.bbrc.2021.02.106. 19. Pathmanapan S, Periyathambi P, Anandasadagopan SK. Fibrin hydrogel incorporated with graphene oxide functionalized nanocomposite scaffolds for bone repair — In vitro and in vivo study. Nanomedicine. 2020; 29: 102251. doi: 10.1016/j.nano.2020.102251. 20. Pan H, Yu Y, Li L, et al. Fabrication and Characterization of Taurine Functionalized Graphene Oxide with 5-Fluorouracil as Anticancer Drug Delivery Systems. Nanoscale Res Lett. 2021; 16:1-y. doi: 10.1186/s11671-021-03541-y. 21. Martínez A, Iglesias I, Lozano R, Teijón J, Blanco M. Synthesis and characterization of thiolated alginate-albumin nanoparticles stabilized by disulfide bonds. Evaluation as drug delivery systems. Carbohydr Polym. 2011; 83:1311-21. doi: 10.1016/j.carbpol.2010.09.038. 22. Karimi S, Rasuli H, Mohammadi R. Facile preparation of pH-sensitive biocompatible alginate beads havening layered double hydroxide supported metal-organic framework for controlled release from doxorubicin to breast cancer cells. Int J Biol Macromol. 2023; 234:123538. doi: 10.1016/j.ijbiomac.2023.123538. 23. Toporovska L, Turko B, Savchak M, Seyedi M, Luzinov I, Kostruba A, et al. Zinc oxide: reduced graphene oxide nanocomposite film for heterogeneous photocatalysis. Opt Quant Electron. 2020; 52:1-12. doi: 10.1007/s11082-019-2132-1. 24. Fabian DK, Fuentealba M, Dönertaş HM, Partridge L, Thornton JM. Functional conservation in genes and pathways linking ageing and immunity. Immun Ageing. 2021; 18:23. doi: 10.1186/s12979-021-00232-1. 25. Shanehsazzadeh S, Lahooti A, Hajipour MJ, et al. External magnetic fields affect the biological impacts of superparamagnetic iron nanoparticles. Colloids Surf B Biointerfaces. 2015; 136: 1107-1112. doi: 10.1016/j.colsurfb.2015.11.028.
|