[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 33, Issue 4 (9-2025) ::
Journal of Ilam University of Medical Sciences 2025, 33(4): 57-78 Back to browse issues page
Synthesis and designing of nanofibers containing zeolitic nanozymes as a wound dressing
Mahnaz Mohammadpour1 , Hamed Ghanbari2 , Zhila Izadi3 , Hanieh Rezaee4 , Hossein Derakhshankhah *5
1- Dept of chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
2- Dept of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
3- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
4- Pharmaceutical Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
5- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran , derakhshankhah.hossein@gmail.com
Abstract:   (16 Views)
Introduction:  Wound healing is crucial for improving patients' quality of life, especially in conditions like diabetes, burns, and surgical wounds. Fiber-based dressings with antioxidant and antibacterial agents, natural polymers, and zeolite nanoparticles accelerate healing and regeneration. The aim of this study was to design and fabricate nanofiber scaffolds based on polyvinyl alcohol (PVA), chitosan, and tragacanth gum, containing zeolite nanoparticles as wound dressings.
Materials & Methods: MT-type zeolite crystals with molecular dimensions and sizes ranging from approximately 10 to 20 nm were synthesized via a low-temperature hydrothermal method using colloidal precursors, without the need for organic templates. The physical and structural properties of the synthesized nanoparticles, including Fourier-transform infrared spectroscopy (FTIR) analysis, particle size distribution, and surface zeta potential, were characterized. Subsequently, nanofibers based on polyvinyl alcohol (PVA), chitosan (CS), and tragacanth gum (TG), incorporating the zeolite nanoparticles, were fabricated through electrospinning. The nanofibers were thoroughly evaluated for their physicochemical, structural, mechanical, cellular toxicity, antioxidant activity, and antibacterial performance.
Results: The characterization tests demonstrated that the nanofiber wound dressings containing zeolite nanoparticles exhibited superior properties compared to the control group without nanoparticles. These nanofibers showed enhanced performance in terms of morphology, fiber diameter, mechanical strength, swelling ratio, degradation rate, porosity, antioxidant activity, cellular biocompatibility, and antibacterial efficacy.
Conclusion: The results of this study demonstrated that nanofibers composed of polyvinyl alcohol (PVA), chitosan (CS), and tragacanth (TG) possess optimal physical and biological properties, creating a suitable environment to accelerate the wound healing process. The study suggests that the incorporation of EMT-type zeolite nanoparticles in PVA/CS/TG/EMT-ZIF nanofibers can enhance their antioxidant and antibacterial properties, making them promising for biomedical engineering applications.
Keywords: EMT-Type Zeolite, Nanofiber Wounds Dressing, Polyvinyl Alcohol, Tragacanth, Chitosan
Full-Text [PDF 1501 kb]   (11 Downloads)    
Type of Study: Applicable | Subject: research
Received: 2025/04/28 | Accepted: 2025/08/20 | Published: 2025/09/27
References
1. Park JW, Hwang SR, Yoon I-S. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules. 2017;22:1259. doi: 10.3390/molecules22081259.
2. Percival NJ. Classification of wounds and their management. Surgery (Oxford). 2002;20:114-7. doi: 10.1383/surg.20.5.114.14626.
3. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73:3861-85. doi: 10.1007/s00018-016-2268-0
4. Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern wound dressings: hydrogel dressings. Biomedicines. 2021;9:1235. doi: 10.3390/biomedicines9091235.
5. Abdelrahman T, Newton H. Wound dressings: principles and practice. Surgery (oxford). 2011;29:491-5. doi :10.1016/j.mpsur.2017.06.005.
6. Zhang Z, Feng Y, Wang L, Liu D, Qin C, Shi Y. A review of preparation methods of porous skin tissue engineering scaffolds. Mater. Today Commun. 2022;32:104109. doi: 10.1016/j.mtcomm.2022.104109.
7. Wang F, Hu S, Jia Q, Zhang L. Advances in electrospinning of natural biomaterials for wound dressing. J Nanomater. 2020;2020:8719859. doi: 10.1155/2020/8719859.
8. Jiang S, Liu S, Feng W. PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater. 2011;4:1228-33. doi: 10.1016/j.jmbbm.2011.04.005.
9. Eskandani M, Derakhshankhah H, Jahanban-Esfahlan R, Jaymand M. Biomimetic alginate-based electroconductive nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol. 2023;249:125991. doi: 10.1016/j.ijbiomac.2023.125991.
10. Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers. 2018;10:462. doi: 10.3390/polym10040462.
11. Ranjbar-Mohammadi M, Bahrami SH. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Mater Sci Eng C Mater Biol Appl. 2015;48:71-9. doi: 10.1016/j.msec.2014.10.020.
12. Bilal M, Khaliq N, Ashraf M, Hussain N, Baqar Z, Zdarta J, et al. Enzyme mimic nanomaterials as nanozymes with catalytic attributes. Colloids Surf B Biointerfaces. 2023;221:112950. doi: 10.1016/j.colsurfb.2022.112950.
13. Zhou Y, Chen W, Wang P, Zhang Y. EMT-type zeolite for deep purification of trace polar-oxygenated compounds from light olefins. Microporous Mesoporous Mater. 2018;271:273-83. doi :10.1016/j.micromeso.2018.05.033.
14. Samadian H, Mohammadpour M, Zare S, Izadi Z, Moradi S, Moradi H, et al. Fabrication and Characterization of Nanofibrous Wound Dressings Containing Gentamicin-conjugated Nanoclay. J Ilam Univ Med Sci. 2024;32:83-98.
15. Gholivand K, Mohammadpour M, Derakhshankhah H, Samadian H, Aghaz F, Malekshah RE, et al. Composites based on alginate containing formylphosphazene-crosslinked chitosan and its Cu (II) complex as an antibiotic-free antibacterial hydrogel dressing with enhanced cytocompatibility. Int J Biol Macromol. 2023;253:127297. doi: 10.1016/j.ijbiomac.2023.127297.
16. Lu S, Liu Q, Li H, Han R, Song C, Ji N, et al. PEG400-modified EMT zeolite for acetone adsorption. J Mater Sci. 2020;55:13737-50. doi:10.1007/s10853-020-04988-7.
17. Li J, Gao M, Yan W, Yu J. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chem Sci. 2023;14:1935-59. doi: 10.1039/d2sc06010h.
18. Thamer BM, Abdo HS. Tragacanth gum-enhanced adsorption performance of polyvinyl alcohol nanofibers for cationic crystal violet dye removal. Biomass Convers Bior. 2024;14:8979-91. doi:10.1007/s13399-023-05060-5.
19. Heydary HA, Karamian E, Poorazizi E, Khandan A, Heydaripour J. A novel nano-fiber of Iranian gum tragacanth-polyvinyl alcohol/nanoclay composite for wound healing applications. Procedia Mater Sci. 2015;11:176-82. doi:10.1016/j.mspro.2015.11.079.
20. Ma YK, Rigolet S, Michelin L, Paillaud J-L, Mintova S, Khoerunnisa F, et al. Facile and fast determination of Si/Al ratio of zeolites using FTIR spectroscopy technique. Micropor Mesopor Mater. 2021;311:110683. doi:10.1016/j.micromeso.2020.110683.
21. Nishihara M, Terayama Y, Haji T, Lyth S, Satokawa S, Matsumoto H. Proton-conductive nano zeolite-PVA composite film as a new water-absorbing electrolyte for water electrolysis. eXPRESS Polym Lett. 2018;12:256-64. doi: 10.3144/expresspolymlett.2018.23.
22. Salim SA, Taha AA, Khozemy EE, EL-Moslamy SH, Kamoun EA. Electrospun zinc-based metal organic framework loaded-PVA/chitosan/hyaluronic acid interfaces in antimicrobial composite nanofibers scaffold for bone regeneration applications. J Drug Deliv Sci Technol. 2022;76:103823. doi:10.1016/j.jddst.2022.103823.
23. Hsu PY, Hu TY, Kumar SR, Wu KC, Lue SJ. Swelling-Resistant, Crosslinked Polyvinyl Alcohol Membranes with High ZIF-8 Nanofiller Loadings as Effective Solid Electrolytes for Alkaline Fuel Cells. Nanomaterials (Basel). 2022;12:865. doi: 10.3390/nano12050865.
24. Aydogdu MO, Oprea AE, Trusca R, Surdu AV, Ficai A, Holban AM, et al. Production and characterization of antimicrobial electrospun nanofibers containing polyurethane, zirconium oxide and zeolite. Bionanoscience. 2018;8:154-65. doi:10.1007/s12668-017-0443-x.
25. Çay A, Miraftab M, Kumbasar EPA. Characterization and swelling performance of physically stabilized electrospun poly (vinyl alcohol)/chitosan nanofibres. Eur polym J. 2014;61:253-62. doi:10.1016/j.eurpolymj.2014.10.017.
26. Ko SW, Lee JY, Lee J, Son BC, Jang SR, Aguilar LE, et al. Analysis of drug release behavior utilizing the swelling characteristics of cellulosic nanofibers. Polymers. 2019;11:1376. doi: 10.3390/polym11091376.
27. Dong Y, Liao S, Ngiam M, Chan CK, Ramakrishna S. Degradation behaviors of electrospun resorbable polyester nanofibers. Tissue Eng Part B Rev. 2009;15:333-51. doi: 10.1089/ten.TEB.2008.0619.
28. Schneider M, Rodríguez-Castellón E, Guerrero-Pérez MO, Hotza D, Junior ADN, Moreira RdFPM. Advances in electrospun composite polymer/zeolite and geopolymer nanofibers: A comprehensive review. Sep Purif Technol. 2024;340:126684. doi:10.1016/j.seppur.2024.126684.
29. Clerici NJ, Vencato AA, Helm Júnior R, Daroit DJ, Brandelli A. Electrospun poly-ε-caprolactone nanofibers incorporating keratin hydrolysates as innovative antioxidant scaffolds. Pharmaceuticals. 2024;17:1016. doi: 10.3390/ph17081016.
30. ENDİZ MS, AKKAYA R. Design and analysis of an improved single-phase QUASI-Z-source inverter. Sigma. 2023;41:602-12. doi:10.14744/sigma.2021.00045.
31. Naseraei MM, Adeli H, Nabavi SR, Salimi-Kenari H, Mansour RN, Sarkati AG. Exploring the potential of incorporating ZIF-67 into electrospun poly (vinyl alcohol)/chitosan nanofibrous mats for wound healing. Int J Biol Macromol. 2025;308:141898. doi: 10.1016/j.ijbiomac.2025.141898.
32. Zhao Y, Wang H, Zou X, Wang D, Fan Y, Zhao X, et al. Antibacterial Vancomycin@ ZIF-8 loaded PVA nanofiber membrane for infected bone repair. Int J Biol Macromol. 2022;23:5629. doi:10.3390/ijms23105629.
33. Neidrauer M, Ercan UK, Bhattacharyya A, Samuels J, Sedlak J, Trikha R, et al. Antimicrobial efficacy and wound-healing property of a topical ointment containing nitric-oxide-loaded zeolites. J Med Microbiol. 2014;63:203-9. doi: 10.1099/jmm.0.067322-0.
34. Choi YY, Hanh To DT, Kim S, Cwiertny DM, Myung NV. Mechanically durable tri-composite polyamide 6/hematite nanoparticle/tetra-n-butylammonium bromide (PA6/α-Fe2O3/TBAB) nanofiber based membranes for phosphate remediation. Front Chem. 2024;12:1472640. doi: 10.3389/fchem.2024.1472640.
35. Tanaka FN, Ferreira Jr CR, de Moura MR, Aouada FA. Water absorption and physicochemical characterization of novel zeolite-PMAA-co-PAAm nanocomposites. J Nanosci Nanotechnol. 2018;18:7286-95. doi: 10.1166/jnn.2018.15515.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: 990253


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadpour M, Ghanbari H, Izadi Z, Rezaee H, Derakhshankhah H. Synthesis and designing of nanofibers containing zeolitic nanozymes as a wound dressing. J. Ilam Uni. Med. Sci. 2025; 33 (4) :57-78
URL: http://sjimu.medilam.ac.ir/article-1-8608-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 33, Issue 4 (9-2025) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.17 seconds with 41 queries by YEKTAWEB 4722