1. Park JW, Hwang SR, Yoon I-S. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules. 2017;22:1259. doi: 10.3390/molecules22081259. 2. Percival NJ. Classification of wounds and their management. Surgery (Oxford). 2002;20:114-7. doi: 10.1383/surg.20.5.114.14626. 3. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73:3861-85. doi: 10.1007/s00018-016-2268-0 4. Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern wound dressings: hydrogel dressings. Biomedicines. 2021;9:1235. doi: 10.3390/biomedicines9091235. 5. Abdelrahman T, Newton H. Wound dressings: principles and practice. Surgery (oxford). 2011;29:491-5. doi :10.1016/j.mpsur.2017.06.005. 6. Zhang Z, Feng Y, Wang L, Liu D, Qin C, Shi Y. A review of preparation methods of porous skin tissue engineering scaffolds. Mater. Today Commun. 2022;32:104109. doi: 10.1016/j.mtcomm.2022.104109. 7. Wang F, Hu S, Jia Q, Zhang L. Advances in electrospinning of natural biomaterials for wound dressing. J Nanomater. 2020;2020:8719859. doi: 10.1155/2020/8719859. 8. Jiang S, Liu S, Feng W. PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater. 2011;4:1228-33. doi: 10.1016/j.jmbbm.2011.04.005. 9. Eskandani M, Derakhshankhah H, Jahanban-Esfahlan R, Jaymand M. Biomimetic alginate-based electroconductive nanofibrous scaffolds for bone tissue engineering application. Int J Biol Macromol. 2023;249:125991. doi: 10.1016/j.ijbiomac.2023.125991. 10. Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers. 2018;10:462. doi: 10.3390/polym10040462. 11. Ranjbar-Mohammadi M, Bahrami SH. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. Mater Sci Eng C Mater Biol Appl. 2015;48:71-9. doi: 10.1016/j.msec.2014.10.020. 12. Bilal M, Khaliq N, Ashraf M, Hussain N, Baqar Z, Zdarta J, et al. Enzyme mimic nanomaterials as nanozymes with catalytic attributes. Colloids Surf B Biointerfaces. 2023;221:112950. doi: 10.1016/j.colsurfb.2022.112950. 13. Zhou Y, Chen W, Wang P, Zhang Y. EMT-type zeolite for deep purification of trace polar-oxygenated compounds from light olefins. Microporous Mesoporous Mater. 2018;271:273-83. doi :10.1016/j.micromeso.2018.05.033. 14. Samadian H, Mohammadpour M, Zare S, Izadi Z, Moradi S, Moradi H, et al. Fabrication and Characterization of Nanofibrous Wound Dressings Containing Gentamicin-conjugated Nanoclay. J Ilam Univ Med Sci. 2024;32:83-98. 15. Gholivand K, Mohammadpour M, Derakhshankhah H, Samadian H, Aghaz F, Malekshah RE, et al. Composites based on alginate containing formylphosphazene-crosslinked chitosan and its Cu (II) complex as an antibiotic-free antibacterial hydrogel dressing with enhanced cytocompatibility. Int J Biol Macromol. 2023;253:127297. doi: 10.1016/j.ijbiomac.2023.127297. 16. Lu S, Liu Q, Li H, Han R, Song C, Ji N, et al. PEG400-modified EMT zeolite for acetone adsorption. J Mater Sci. 2020;55:13737-50. doi:10.1007/s10853-020-04988-7. 17. Li J, Gao M, Yan W, Yu J. Regulation of the Si/Al ratios and Al distributions of zeolites and their impact on properties. Chem Sci. 2023;14:1935-59. doi: 10.1039/d2sc06010h. 18. Thamer BM, Abdo HS. Tragacanth gum-enhanced adsorption performance of polyvinyl alcohol nanofibers for cationic crystal violet dye removal. Biomass Convers Bior. 2024;14:8979-91. doi:10.1007/s13399-023-05060-5. 19. Heydary HA, Karamian E, Poorazizi E, Khandan A, Heydaripour J. A novel nano-fiber of Iranian gum tragacanth-polyvinyl alcohol/nanoclay composite for wound healing applications. Procedia Mater Sci. 2015;11:176-82. doi:10.1016/j.mspro.2015.11.079. 20. Ma YK, Rigolet S, Michelin L, Paillaud J-L, Mintova S, Khoerunnisa F, et al. Facile and fast determination of Si/Al ratio of zeolites using FTIR spectroscopy technique. Micropor Mesopor Mater. 2021;311:110683. doi:10.1016/j.micromeso.2020.110683. 21. Nishihara M, Terayama Y, Haji T, Lyth S, Satokawa S, Matsumoto H. Proton-conductive nano zeolite-PVA composite film as a new water-absorbing electrolyte for water electrolysis. eXPRESS Polym Lett. 2018;12:256-64. doi: 10.3144/expresspolymlett.2018.23. 22. Salim SA, Taha AA, Khozemy EE, EL-Moslamy SH, Kamoun EA. Electrospun zinc-based metal organic framework loaded-PVA/chitosan/hyaluronic acid interfaces in antimicrobial composite nanofibers scaffold for bone regeneration applications. J Drug Deliv Sci Technol. 2022;76:103823. doi:10.1016/j.jddst.2022.103823. 23. Hsu PY, Hu TY, Kumar SR, Wu KC, Lue SJ. Swelling-Resistant, Crosslinked Polyvinyl Alcohol Membranes with High ZIF-8 Nanofiller Loadings as Effective Solid Electrolytes for Alkaline Fuel Cells. Nanomaterials (Basel). 2022;12:865. doi: 10.3390/nano12050865. 24. Aydogdu MO, Oprea AE, Trusca R, Surdu AV, Ficai A, Holban AM, et al. Production and characterization of antimicrobial electrospun nanofibers containing polyurethane, zirconium oxide and zeolite. Bionanoscience. 2018;8:154-65. doi:10.1007/s12668-017-0443-x. 25. Çay A, Miraftab M, Kumbasar EPA. Characterization and swelling performance of physically stabilized electrospun poly (vinyl alcohol)/chitosan nanofibres. Eur polym J. 2014;61:253-62. doi:10.1016/j.eurpolymj.2014.10.017. 26. Ko SW, Lee JY, Lee J, Son BC, Jang SR, Aguilar LE, et al. Analysis of drug release behavior utilizing the swelling characteristics of cellulosic nanofibers. Polymers. 2019;11:1376. doi: 10.3390/polym11091376. 27. Dong Y, Liao S, Ngiam M, Chan CK, Ramakrishna S. Degradation behaviors of electrospun resorbable polyester nanofibers. Tissue Eng Part B Rev. 2009;15:333-51. doi: 10.1089/ten.TEB.2008.0619. 28. Schneider M, Rodríguez-Castellón E, Guerrero-Pérez MO, Hotza D, Junior ADN, Moreira RdFPM. Advances in electrospun composite polymer/zeolite and geopolymer nanofibers: A comprehensive review. Sep Purif Technol. 2024;340:126684. doi:10.1016/j.seppur.2024.126684. 29. Clerici NJ, Vencato AA, Helm Júnior R, Daroit DJ, Brandelli A. Electrospun poly-ε-caprolactone nanofibers incorporating keratin hydrolysates as innovative antioxidant scaffolds. Pharmaceuticals. 2024;17:1016. doi: 10.3390/ph17081016. 30. ENDİZ MS, AKKAYA R. Design and analysis of an improved single-phase QUASI-Z-source inverter. Sigma. 2023;41:602-12. doi:10.14744/sigma.2021.00045. 31. Naseraei MM, Adeli H, Nabavi SR, Salimi-Kenari H, Mansour RN, Sarkati AG. Exploring the potential of incorporating ZIF-67 into electrospun poly (vinyl alcohol)/chitosan nanofibrous mats for wound healing. Int J Biol Macromol. 2025;308:141898. doi: 10.1016/j.ijbiomac.2025.141898. 32. Zhao Y, Wang H, Zou X, Wang D, Fan Y, Zhao X, et al. Antibacterial Vancomycin@ ZIF-8 loaded PVA nanofiber membrane for infected bone repair. Int J Biol Macromol. 2022;23:5629. doi:10.3390/ijms23105629. 33. Neidrauer M, Ercan UK, Bhattacharyya A, Samuels J, Sedlak J, Trikha R, et al. Antimicrobial efficacy and wound-healing property of a topical ointment containing nitric-oxide-loaded zeolites. J Med Microbiol. 2014;63:203-9. doi: 10.1099/jmm.0.067322-0. 34. Choi YY, Hanh To DT, Kim S, Cwiertny DM, Myung NV. Mechanically durable tri-composite polyamide 6/hematite nanoparticle/tetra-n-butylammonium bromide (PA6/α-Fe2O3/TBAB) nanofiber based membranes for phosphate remediation. Front Chem. 2024;12:1472640. doi: 10.3389/fchem.2024.1472640. 35. Tanaka FN, Ferreira Jr CR, de Moura MR, Aouada FA. Water absorption and physicochemical characterization of novel zeolite-PMAA-co-PAAm nanocomposites. J Nanosci Nanotechnol. 2018;18:7286-95. doi: 10.1166/jnn.2018.15515.
|