[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 33, Issue 3 (7-2025) ::
Journal of Ilam University of Medical Sciences 2025, 33(3): 113-148 Back to browse issues page
Diagnostic Techniques and Artificial Intelligence for Multiple Sclerosis Identification
Asma Raisi1 , Mahsa Nasiri1 , Hajar Danesh *2
1- Dept of Electrical and Biomedical Engineering, Faculty of Engineering and ‎Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
2- Dept of Electrical and Biomedical Engineering, Faculty of Engineering and ‎Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran , hajardanesh@yahoo.com
Abstract:   (30 Views)
Introduction:  Multiple sclerosis is a chronic autoimmune disorder causing the degeneration of the myelin sheath, affecting nerve signal transmission. Symptoms include muscle weakness, visual disturbances, balance impairments, and incoordination. Early diagnosis is crucial for effective disease management and preventing irreversible neurological damage. This research was designed to explore diagnostic methods and introduces machine learning for automated data analysis and faster diagnosis.
Materials & Methods: This study reviewed diagnostic methods for multiple sclerosis (MS), including electroencephalography (EEG), electromyography (EMG), clinical data, cerebrospinal fluid analysis, magnetic resonance imaging (MRI), and optical coherence tomography (OCT). Artificial intelligence (AI)-based approaches were also introduced to enable automated data analysis and expedite disease diagnosis. A novel platform-based method was proposed as an exclusive approach for automated detection through the integration of established diagnostic techniques.
Results: Findings indicated that magnetic resonance imaging (MRI) demonstrates high accuracy in the diagnosis of multiple sclerosis. Based on the average performance of artificial intelligence-based methods across the primary diagnostic modalities, accuracies of 90%, 75%, 80%, 90%, and 95% were achieved for MRI, optical coherence tomography (OCT), electroencephalography (EEG), electromyography (EMG), and cerebrospinal fluid analysis, respectively. The proposed platform integrates these modalities to enhance both the speed and accuracy of disease detection.
Conclusion: The utilization of advanced diagnostic techniques, coupled with the integration of multiple methodologies, markedly improves the early detection and therapeutic intervention of multiple sclerosis, thereby reducing the associated complications of the disease.

 
Keywords: Multiple sclerosis, MRI, OCT, EEG, Artificial intelligence
Full-Text [PDF 2469 kb]   (1 Downloads)    
Type of Study: Research | Subject: Surgical nursing
Received: 2025/01/19 | Accepted: 2025/04/29 | Published: 2025/07/27
References
1. Khodabandeh Z, Rabbani H, Shirani Bidabadi N, Bonyani M, Kafieh R. Comprehensive evaluation of artificial intelligence models for diagnosis of multiple sclerosis using information from retinal layers multicenter OCT images. MedRxiv. 2024:2024.03.05.24303789. doi:10.1101/2024.03.05.24303789.
2. Eshaghi A, Young AL, Wijeratne PA, Prados F, Arnold DL, Narayanan S, et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat Commun. 2021; 12:2078. doi: 10.1038/s41467-021-22265-2.
3. Zhao Y, Healy BC, Rotstein D, Guttmann CR, Bakshi R, Weiner HL, et al. Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLoS One. 2017;12: e0174866. doi: 10.1371/journal.pone.0174866.
4. Dobson R, Giovannoni G. Multiple sclerosis-a review. Eur J Neurol. 2019; 26: 27-40.doi:10.1111/ene.13819.
5. Kapucu S, Akkuş Y, Akdemir N. Knowledge of patients with multiple sclerosis about their disease and prevention of complications. J Neurol Sci. 2011; 30:149-53.
6. Filippi M, Brück W, Chard D, Fazekas F, Geurts JJ, Enzinger C, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2019; 18:198-210. doi:10.1016/S1474-4422(18)30451-4.
7. Rocca MA, Preziosa P, Barkhof F, Brownlee W, Calabrese M, De Stefano N, et al. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. Lancet Reg Health Eur. 2024;44: 100954. doi: 10.1016/j.lanepe.2024.100978.
8. Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, De Stefano N, et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. 2019; 142:1858-75. doi: 10.1093/brain/awz144.
9. Coles A. Multiple sclerosis: the bare essentials. Pract Neurol. 2009; 9:118-26. doi: 0.1136/jnnp.2008.171132.
10. Wattjes MP, Steenwijk MD, Stangel M. MRI in the diagnosis and monitoring of multiple sclerosis: an update. Clin Neuroradiol. 2015; 25:157-65. doi:10.1007/s00062-015-0430-y.
11. Tomassini V, Sinclair A, Sawlani V, Overell J, Pearson OR, Hall J, et al. Diagnosis and management of multiple sclerosis: MRI in clinical practice. J Neurol. 2020;267:2917-25. doi: 10.1007/s00415-020-09930-0.
12. Granziera C, Wuerfel J, Barkhof F, Calabrese M, De Stefano N, Enzinger C, et al. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain. 2021; 144:1296-311. doi: 10.1093/brain/awab029.
13. Davanian F, Adibi I, Tajmirriahi M, Monemian M, Zojaji Z, Montazerolghaem A, et al. Isfahan Artificial Intelligence Event 2023: lesion segmentation and localization in magnetic resonance images of patients with multiple sclerosis. J Med Signals Sens. 2025; 15:5. doi: 10.4103/jmss.jmss_55_24.
14. Filippi M, Rocca MA, De Stefano N, Enzinger C, Fisher E, Horsfield MA, et al. Magnetic resonance techniques in multiple sclerosis: the present and the future. Arch Neurol. 2011; 68:1514-20. doi:10.1001/archneurol.2011.914.
15. Okuda DT, Lebrun-Frénay C. Transforming grayscale MRI images to color utilizing generative artificial intelligence to better understand multiple sclerosis. J Cent Nerv Syst Dis. 2025; 17:11795735241310138. doi: 10.1177/11795735241310138.
16. Collorone S, Coll L, Lorenzi M, Lladó X, Sastre-Garriga J, Tintoré M, et al. Artificial intelligence applied to MRI data to tackle key challenges in multiple sclerosis. Mult Scler. 2024; 30:13524585241249422. doi:10.1177/13524585241249422
17. Campanioni S, Veiga C, Prieto-González JM, González-Nóvoa JA, Busto L, Martinez C, et al. Explainable machine learning on baseline MRI predicts multiple sclerosis trajectory descriptors. PLoS One. 2024;19: e0306999. doi: 10.1371/journal.pone.0306999.
18. Ananthavarathan P, Sahi N, Chard DT. An update on the role of magnetic resonance imaging in predicting and monitoring multiple sclerosis progression. Expert Rev Neurother. 2024; 24:201-16. doi: 10.1080/14737175.2024.2304116.
19. Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, et al. Multiple sclerosis diagnosis using machine learning and deep learning: challenges and opportunities. Sensors (Basel). 2022; 22:7856. doi:10.3390/s22207856.
20. Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017; 19:221-48. doi:10.1146/annurev-bioeng-071516-044442.
21. Liang X, Zeng Q, Zhu Y, Wang Y, He T, Wu L, et al. Differentiation between multiple sclerosis and neuromyelitis optic spectrum disorders with multilevel fMRI features: a machine learning analysis. Sci Rep. 2025; 15:1909. doi:10.1038/s41598-024-84508-8
22. Valverde S, Cabezas M, Roura E, González-Villà S, Pareto D, Vilanova JC, et al. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Neuroimage. 2017; 155:159-68. doi: 10.1016/j.neuroimage.2017.04.034.
23. Suk HI, Lee SW, Shen D; Alzheimer’s Disease Neuroimaging Initiative. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct Funct. 2016; 221:2569-87. doi:10.1007/s00429-015-1059-y.
24. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with deep neural networks. Med Image Anal. 2017; 35:18-31. doi: 10.1016/j.media.2016.05.004
25. Daqqaq TS, Alhasan AS, Ghunaim HA. Diagnostic effectiveness of deep learning-based MRI in predicting multiple sclerosis: a meta-analysis. Neurosciences (Riyadh). 2024; 29:77-89. doi: 10.17712/nsj.2024.2.20230103.
26. Hechmi C, Bouzidi D, Jemai O, editors. Convolutional neural network and k-nearest neighbors classifier for enhanced detection of multiple sclerosis. In: Proc SPIE 13178, International Conference on Machine Vision (ICMV 2024); 2025. p. 131781F. doi: 10.1117/12.3055064.
27. Seok JM, Cho W, Chung YH, Ju H, Kim ST, Seong JK, et al. Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using a deep learning model. Sci Rep. 2023; 13:11625. doi: 10.1212/WNL.0000000000001729.
28. Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O, editors. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016. Lect Notes Comput Sci. Cham: Springer; 2016; 9902: 424-32. doi: 10.1007/978-3-319-46723-8_49.
29. Tousignant A, Lemaître P, Precup D, Arnold DL, Arbel T, editors. Prediction of disease progression in multiple sclerosis patients using deep learning analysis of MRI data. In: Proceedings of the International Conference on Medical Imaging with Deep Learning (MIDL 2019). Proc Mach Learn Res. 2019; 102: 556-65.
30. Saidha S, Al-Louzi O, Ratchford JN, Bhargava P, Oh J, Newsome SD, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann Neurol. 2015; 78:801-13. doi: 10.1002/ana.24487.
31. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:436-44. doi:10.1038/nature14539.
32. Montolío A, Cegoñino J, Garcia-Martín E, Pérez del Palomar A. The macular retinal ganglion cell layer as a biomarker for diagnosis and prognosis in multiple sclerosis: a deep learning approach. Acta Ophthalmol. 2024;102: e272-e84. doi: 10.1111/aos.15722.
33. Shoeibi A, Khodatars M, Jafari M, Moridian P, Rezaei M, Alizadehsani R, et al. Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: a review. Comput Biol Med. 2021; 136:104697. doi: 10.1016/j.compbiomed.2021.104697.
34. Aghababaei A, Arian R, Soltanipour A, Ashtari F, Rabbani H, Kafieh R. Discrimination of multiple sclerosis using scanning laser ophthalmoscopy images with autoencoder-based feature extraction. Mult Scler Relat Disord. 2024; 85:105743. doi: 10.1016/j.msard.2024.105743.
35. Alsubaie MG, Alharbi FK, Albalawi AM, Almutairi AF, Alqahtani MM, Alzahrani AM, et al. Improving multiple sclerosis detection with autoencoder-based feature extraction from MRI and OCT images. J Comput Neurosci. 2024; 52:1-14.
36. Gianchecchi E, Delfino DV, Fierabracci A. Recent insights on the putative role of autophagy in autoimmune diseases. Autoimmun Rev. 2014; 13:231-41. doi: 10.1016/j.autrev.2013.10.007.
37. Awad A, Hemmer B, Hartung H-P, Kieseier B, Bennett JL, Stuve O. Analyses of cerebrospinal fluid in the diagnosis and monitoring of multiple sclerosis. J Neuroimmunol. 2010; 219:1-7. doi: 10.1016/j.jneuroim.2009.09.002.
38. Link H, Huang Y-M. Oligoclonal bands in multiple sclerosis cerebrospinal fluid: an update on methodology andclinicalusefulness. J Neuroimmunol. 2006; 180:17-28. doi: 10.1016/j.jneuroim.2006.07.006.
39. Cross AH, Gelfand JM, Thebault S, Bennett JL, Von Büdingen HC, Cameron B, et al. Emerging cerebrospinal fluid biomarkers of disease activity and progression in multiple sclerosis. JAMA Neurol. 2024; 81:373-83. doi:10.1001/jamaneurol.2024.0017.
40. Axelsson M, Malmeström C, Nilsson S, Haghighi S, Rosengren L, Lycke J. Glial fibrillary acidic protein: a potential biomarker for progression in multiple sclerosis. J Neurol. 2011; 258:882-8. doi:10.1007/s00415-010-5863-2.
41. Martin S-J, McGlasson S, Hunt D, Overell J. Cerebrospinal fluid neurofilament light chain in multiple sclerosis and its subtypes: a meta-analysis of case–control studies. J Neurol Neurosurg Psychiatry. 2019; 90:1059-67. doi: 10.1136/jnnp-2018-319190.
42. Passali M, Galea I, Knudsen MH, Lau LC, Cramer SP, Frederiksen JL. Cerebrospinal fluid neurofilament light chain in acute optic neuritis and its predictive ability of multiple sclerosis. J Neurol. 2024; 271:6127-35. doi: 10.1007/s00415-022-11193-w.
43. Striano P, Orefice G, Brescia Morra V, Boccella P, Sarappa C, Lanzillo R, et al. Epileptic seizures in multiple sclerosis: clinical and EEG correlations. Neurol Sci. 2003; 24:322-8. doi: 10.1007/s10072-003-0183-2.
44. Vázquez-Marrufo M, Galvao-Carmona A, Caballero-Díaz R, Borges M, Paramo MD, Benítez-Lugo ML, et al. Altered individual behavioral and EEG parameters are related to the EDSS score in relapsing-remitting multiple sclerosis patients. PLoS One. 2019;14: e0219594. doi: 10.1371/journal.pone.0219594.
45. Zhang X, Wang M, Wei W, Xu Y, Gao L, Sun Y, et al., editors. An accurate diagnosis of coronary heart disease by Catboost, with easily accessible data. J Phys Conf Ser. 2021; 1865:012023. doi:10.1088/1742-6596/1955/1/012027.
46. Wątorek M, Tomczyk W, Gawłowska M, Golonka-Afek N, Żyrkowska A, Marona M, et al. Multifractal organization of EEG signals in multiple sclerosis. Biomed Signal Process Control. 2024; 91:105916. doi: 10.1016/j.bspc.2023.105916.
47. Mórocz I, Jouzizadeh M, Ghaderi AH, Cheraghmakani H, Baghbanian SM, Khanbabaie R, et al. Brain states analysis of EEG data distinguishes multiple sclerosis. arXiv. arXiv:2406.15665. 2024. doi:10.48550/arXiv.2406.15665.
48. Mokdad A, Debbal SMEA, Meziani F. Diagnosis of amyotrophic lateral sclerosis (ALS) disorders based on electromyogram (EMG) signal analysis and feature selection. Pol J Med Phys Eng. 2020; 26:155-60. doi: 10.2478/pjmpe-2020-0018.
49. Ferahtia A. Surface water quality assessment in semi-arid region (El Hodna watershed, Algeria) based on water quality index (WQI). J Mater Environ Sci. 2021; 12:301-11. doi: 10.24193/subbchem.2021.1.10.
50. Qader TM, Abdullah Q. Utility of single fibre electromyography (SFEMG) and motor unit number estimation technique (MUNE) in the diagnosis and differentiation of polyneuropathies of different aetiology. J Pak Med Assoc. 2024; 74:677-82. doi: 10.47391/JPMA.9364.
51. Bashford J, Mills K, Shaw CE. The evolving role of surface electromyography in amyotrophic lateral sclerosis: asystematic review. Clin Neuro physiol. 2020; 131:942-50. doi: 10.1016/j.clinph.2019.12.007.
52. Huang S-C, Guerrieri S, Dalla Costa G, Pisa M, Leccabue G, Gregoris L, et al. Intensive neurorehabilitation and gait improvement in progressive multiple sclerosis: clinical, kinematic and electromyographic analysis. Brain Sci. 2022; 12:258. doi: 10.3390/brainsci12020258.
53. Dai J. Sparse discrete wavelet decomposition and filter bank techniques for speech recognition [dissertation]. West Lafayette (IN): Purdue University; 2019.
54. Fan F, Li M, Teng Y, Wang G. Soft autoencoder and its wavelet adaptation interpretation. IEEE Trans Comput Imaging. 2020; 6:1245-57. doi: 10.1109/TCI.2020.3013796.
55. Hossen A, Anwar AR, Koirala N, Ding H, Budker D, Wickenbrock A, et al. Machine learning aided classification of tremor in multiple sclerosis. EBioMedicine. 2022; 82:104157. doi: 10.1016/j.ebiom.2022.104152.
56. Ford H. Clinical presentation and diagnosis of multiple sclerosis. Clin Med (Lond). 2020; 20:380-3. doi: 10.7861/clinmed.2020-0292.
57. Cagol A, Cortese R, Barakovic M, Schaedelin S, Ruberte E, Absinta M, et al. Diagnostic performance of cortical lesions and the central vein sign in multiple sclerosis. JAMA Neurol. 2024; 81:143-53. doi: 10.1001/jamaneurol.2023.4737.
58. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006; 63:3-42. doi: 10.1007/s10994-006-6226-1.
59. Biau G. Analysis of a random forests model. J Mach Learn Res. 2012; 13:1063-95.
60. Chen T, Guestrin C, editors. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM; 2016. p. 785-94. doi: 10.1145/2939672.2939785.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: داده های استفاده در این مقاله در دسترس عموم است و به مقا


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Raisi A, Nasiri M, Danesh H. Diagnostic Techniques and Artificial Intelligence for Multiple Sclerosis Identification. J. Ilam Uni. Med. Sci. 2025; 33 (3) :113-148
URL: http://sjimu.medilam.ac.ir/article-1-8525-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 33, Issue 3 (7-2025) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.16 seconds with 39 queries by YEKTAWEB 4714