1. Wullems JA, Degens H, Verschueren SM, Morse CI, Grant DM, Onambélé-Pearson GL. Sedentary behaviour (especially accumulation pattern) has an independent negative impact on skeletal muscle size and architecture in community-dwelling older adults. PLoS One. 2024;19:e0294555. doi: 10.1371/journal.pone.0294555. 2. Pouzesg Jadidi J, Pouzesh Jadidi R, Seifi Skishahr F, Azadi B. Effect of eight weeks of upper body, lower body, and concurrent resistance training on the levels of homocysteine, adiponectin, and insulin resistance in healthy untrained females. SJRM. 2020;9:83-92. doi:10.22037/jrm.2019.111786.2098. 3. Sefal Manesh SS, Khaledi N, Rajabi H, Askari H. The comparison of the effect of high-intensity interval and progressive resistance training on activated transcription factor 3 myocardial gene expression in male diabetic rats. J Sports Physiol Exerc. 2021;14:67-76. doi:10.52547/joeppa.14.2.67. 4. Naderi L, Banaei Borojeni J, Kargarfard M, Keshavarz S. Comparison of interval and continuous training on growth differentiation factor 15, pancreatic beta cell function, and insulin resistance in women with type 2 diabetes. Med J Mashhad Univ Med Sci. 2021;64:2681-91. 5. Park SS, Seo YK, Kwon KS. Sarcopenia targeting with autophagy mechanism by exercise. BMB Rep. 2019;52:64-69. doi:10.5483/BMBRep.2019.52.1.292. 6. Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, et al. AMPK phosphorylation of ULK1 is required for targeting of mitochondria to lysosomes in exercise induced mitophagy. Nat Commun. 2017;8:548. doi:10.1038/s41467-017-00520-9. 7. Bahrami SA, Bakhtiari N. Ursolic acid regulates aging process through enhancing of metabolic sensor protein levels. Biomed Pharmacother. 2016;82:8-14. doi:10.1016/j.biopha.2016.04.047. 8. Bakhtiari N, Hosseinkhani S, Soleimani M, Hemmati R, Noori Zadeh A, Javan M, et al. Short term ursolic acid promotes skeletal muscle rejuvenation through enhancing SIRT1 expression and satellite cells proliferation. Biomed Pharmacother. 2016;78:185-96. doi:10.1016/j.biopha.2016.01.010. 9. Alizadeh Pahlavani H. Exercise therapy for people with sarcopenic obesity: Myokines and adipokines as effective actors. Front Endocrinol (Lausanne). 2022;13:811751. doi:10.3389/fendo.2022.811751. 10. Li N, Shi H, Guo Q, Gan Y, Zhang Y, Jia J, et al. Aerobic exercise prevents chronic inflammation and insulin resistance in skeletal muscle of high fat diet mice. Nutrients. 2022;14:3730. doi:10.3390/nu14183730. 11. Zou Y, Li J, Lu C, Wang J, Ge J, Huang Y, et al. High fat emulsion induced rat model of nonalcoholic steatohepatitis. Life Sci. 2006;79:1100-7. doi:10.1016/j.lfs.2006.07.039. 12. Luzzi M, Skoumbourdis E, Baumans V, Conte A, Sherwin C, Kerwin A, et al. Collecting blood from rodents: A discussion by the Laboratory Animal Refinement and Enrichment Forum. Anim Technol Welfare. 2005;4:99-102. doi:10.4236/ape.2014.42011. 13. Harikrishnan VS, Hansen AK, Abelson KS, Sørensen DB. A comparison of various methods of blood sampling in mice and rats: Effects on animal welfare. Lab Anim. 2018;52:253-64. doi:10.1177/0023677217741332. 14. Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, et al. Recent advances on the molecular mechanisms of exercise-induced improvements in cognitive dysfunction. Transl Neurodegener. 2023;12:9. doi:10.1186/s40035-023-00341-5. 15. Jokar M, Sherafati Moghadam M. The effect of 4 weeks high intensity interval training (HIIT) on the content of FOXO3a and Beclin 1 proteins in the left ventricular heart tissue in type 2 diabetic rats. Feyz Med Sci J. 2020;24:160-9. 16. Sun M, Huang C, Wang C, Zheng J, Zhang P, Xu Y, et al. Ginsenoside Rg3 improves cardiac mitochondrial population quality: Mimetic exercise training. Biochem Biophys Res Commun. 2013;441:169-74. doi:10.1016/j.bbrc.2013.09.065. 17. Li FH, Li T, Su YM, Ai JY, Duan R, Liu TCY. Cardiac basal autophagic activity and increased exercise capacity. J Physiol Sci. 2018;68:729-42. doi:10.1007/s12576-018-0611-9. 18. Lee Y, Kang EB, Kwon I, Cosio-Lima L, Cavnar P, Javan GT. Cardiac kinetophagy coincides with activation of anabolic signaling. Med Sci Sports Exerc. 2016;48:219-26. doi:10.1249/MSS.0000000000000768. 19. Afshar Jafari A, Ali Zarghami Khameneh A, Saeid Nikookheslat S, Pooran Karimi P. The effect of high-intensity interval training (HIIT) with and without caffeine injection on expression of myocardial autophagy-related proteins in diabetic rats. Iran J Diabetes Lipid Disord. 2020;19:183-94. doi:10.5812/ijdld.104315. 20. Maqsoud NP, Abbas S. Impact of eight weeks of moderate-intensity continuous aerobic training on IL-1β and IL-13 levels in soleus muscle tissue of diabetic male rats. J Diabetes Metab Disord. 2021;20:1-9. doi:10.1007/s40200-021-00704-6. 21. Barzegari M, Naghibi SA, Safaei H, Khavidaki D, Salehi M. Comparison of two aerobic training protocols on SOD and TNF-α levels in cardiac tissue of type 2 diabetic rats. Res Sports Med Tech. 2023;20:43-56. doi:10.22124/rsmt.2023.6021. 22. Jokar M, Sherafati Moghadam M. High-intensity interval training inhibits autophagy in the heart tissue of type 2 diabetic rats by decreasing FOXO3a and Beclin-1 protein content. Iran J Diabetes Metab. 2019;18:292-9. doi:10.18869/acadpub.ijdm.18.6.292. 23. Kavazis AN, Smuder AJ, Powers SK. Effects of short-term endurance exercise training on acute doxorubicin-induced FoxO transcription in cardiac and skeletal muscle. J Appl Physiol. 2014;117:223-30. doi:10.1152/japplphysiol.00620.2013. 24. Wang X, Hu S, Liu L. Phosphorylation and acetylation modifications of FOXO3a: Independently or synergistically? Oncol Lett. 2017;13:2867-72. doi:10.3892/ol.2017.5911.
|