1. Kermani P, Hempstead B. BDNF actions in the cardiovascular system: roles in development, adulthood and response to injury. Front Physiol. 2019;10:455. doi: 10.3389/fphys.2019.00455. 2. Fulgenzi G, Tomassoni-Ardori F, Babini L, Becker J, Barrick C, Puverel S, et al. BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB. T1 receptor activation. J Cell Biol. 2015;210:1003-12. doi: 10.1083/jcb.201502100. 3. Feng N, Huke S, Zhu G, Tocchetti CG, Shi S, Aiba T, et al. Constitutive BDNF/TrkB signaling is required for normal cardiac contraction and relaxation. Proc Natl Acad Sci U S A. 2015;112:1880-5. doi: 10.1073/pnas.1504270112. 4. Kaess BM, Preis SR, Lieb W, Beiser AS, Yang Q, Chen TC, et al. Circulating brain‐derived neurotrophic factor concentrations and the risk of cardiovascular disease in the community. J Am Heart Assoc. 2015;4:e001544. doi: 10.1161/JAHA.114.001544. 5. Lee HW, Ahmad M, Weldrick JJ, Wang HW, Burgon PG, Leenen FH. Effects of exercise training and TrkB blockade on cardiac function and BDNF-TrkB signaling postmyocardial infarction in rats. Am J Physiol Heart Circ Physiol. 2018;315:H1821-34. doi: 10.1152/ajpheart.00245.2018. 6. Wen CP, Wai JPM, Tsai MK, Yang YC, Cheng TYD, Lee M-C, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378:1244-53. doi: 10.1016/S0140-6736(11)60749-6. 7. Maroofi A, Rouch AB, Naderi N, Damirchi A. Effects of two different exercise paradigms on cardiac function, BDNF-TrkB expression, and myocardial protection in the presence and absence of Western diet. Int J Cardiol Heart Vasc. 2022;40:101022. doi: 10.1016/j.ijcha.2022.101022. 8. Murr C, Pilz S, Grammer TB, Kleber ME, Meinitzer A, Boehm BO, et al. Vitamin D deficiency parallels inflammation and immune activation, the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chem Lab Med. 2012;50:2205-12. doi: 10.1515/cclm-2012-0157. 9. D'Amelio P. Vitamin D deficiency and risk of metabolic Syndrome in aging men. World J Mens Health. 2021;39:291-301. doi: 10.5534/wjmh.200189. 10. Liu L, Cui S, Volpe SL, May NS, Sukumar D, DiMaria-Ghalili RA, et al. Vitamin d deficiency and metabolic syndrome: The joint effect on cardiovascular and all-cause mortality in the United States adults. World J Cardiol. 2022;14:411-26. doi: 10.4330/wjc.v14.i7.411. 11. Liu L, Chen M, Hankins SR, Nùñez AE, Watson RA, Weinstock PJ, et al. Serum 25-hydroxyvitamin D concentration and mortality from heart failure and cardiovascular disease, and premature mortality from all-cause in United States adults. Am J Cardiol. 2012;110:834-9. doi: 10.1016/j.amjcard.2012.05.013. 12. Holick MF, Chen TC. Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008;87:1080S-6S. doi: 10.1093/ajcn/87.4.1080S. 13. Hajiluian G, Nameni G, Shahabi P, Mesgari-Abbasi M, Sadigh-Eteghad S, Farhangi M. Vitamin D administration, cognitive function, BBB permeability and neuroinflammatory factors in high-fat diet-induced obese rats. Int J Obes (Lond). 2017;41:639-44. doi: 10.1038/ijo.2017.10. 14. Yurekli U, Tunc Z. Correlation between Vitamin D, homocysteine and brain-derived neurotrophic factor levels in patients with ischemic stroke. Eur Rev Med Pharmacol Sci. 2022;26: 8004-10. doi: 10.26355/eurrev_202211_30154. 15. Baranowski BJ, MacPherson RE. Acute exercise induced BDNF-TrkB signalling is intact in the prefrontal cortex of obese, glucose-intolerant male mice. Appl Physiol Nutr Metab. 2018;43:1083-9. doi: 10.1139/apnm-2018-0108. 16. Molteni R, Wu A, Vaynman S, Ying Z, Barnard R, Gomez-Pinilla F. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience. 2004;123:429-40. doi: 10.1016/j.neuroscience.2003.09.020. 17. Kim TW, Choi HH, Chung YR. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice. J Exerc Rehabil.2016;12:156 -62. doi: 10.12965/jer.1632644.322. 18. Molteni R, Barnard R, Ying Z, Roberts CK, Gómez-Pinilla F. A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience. 2002;112:803-14. doi: 10.1016/s0306-4522(02)00123-9. 19. Howard BV, Wylie-Rosett J. Sugar and cardiovascular disease: A statement for healthcare professionals from the Committee on Nutrition of the Council on Nutrition, Physical Activity, and Metabolism of the American Heart Association. Circulation. 2002;106:523-7. doi: 10.1161/01.cir.0000019552.77778.04. 20. Mirtschink P, Jang C, Arany Z, Krek W. Fructose metabolism, cardiometabolic risk, and the epidemic of coronary artery disease. Eur Heart J. 2018;39:2497-505. doi: 10.1093/eurheartj/ehx518. 21. Johnson RK, Appel LJ, Brands M, Howard BV, Lefevre M, Lustig RH, et al. Dietary sugars intake and cardiovascular health: a scientific statement from the American Heart Association. Circulation. 2009;120:1011-20. doi: 10.1161/CIRCULATIONAHA.109.192627. 22. Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health. 2007;97:667-75. doi: 10.2105/AJPH.2005.083782. 23. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, et al. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients. 2020;12:925. doi: 10.3390/nu12040925. 24. Agrimi J, Spalletti C, Baroni C, Keceli G, Zhu G, Caragnano A, et al. Obese mice exposed to psychosocial stress display cardiac and hippocampal dysfunction associated with local brain-derived neurotrophic factor depletion. EBioMedicine. 2019;47:384-401. doi: 10.1016/j.ebiom.2019.08.042. 25. Spagnuolo MS, Bergamo P, Crescenzo R, Iannotta L, Treppiccione L, Iossa S, Cigliano L. Brain Nrf2 pathway, autophagy, and synaptic function proteins are modulated by a short-term fructose feeding in young and adult rats. Nutr Neurosci. 2020;23:309-20. doi: 10.1080/1028415X.2018.1501532. 26. Liu WC, Wu CW, Tain YL, Fu MH, Hung CY, Chen IC, et al. Oral pioglitazone ameliorates fructose-induced peripheral insulin resistance and hippocampal gliosis but not restores inhibited hippocampal adult neurogenesis. Biochim Biophys Acta Mol Basis Dis. 2018;1864: 274-85. doi: 10.1016/j.bbadis.2017.10.017. 27. Okada S, Yokoyama M, Toko H, Tateno K, Moriya J, Shimizu I, et al. Brain-derived neurotrophic factor protects against cardiac dysfunction after myocardial infarction via a central nervous system–mediated pathway. Arterioscler Thromb Vasc Biol. 2012;32:1902-9. doi: 10.1161/ATVBAHA.112.248930. 28. Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 2000;7:153-63. doi: 10.1016/s0928-4680(00)00053-5. 29. Hurtado E, Cilleros V, Nadal L, Simó A, Obis T, Garcia N, et al. Muscle contraction regulates BDNF/TrkB signaling to modulate synaptic function through presynaptic cPKCα and cPKCβI. Front Mol Neurosci. 2017;10:147. doi: 10.3389/fnmol.2017.00147. 30. Matthews VB, Åström M-B, Chan M, Bruce CR, Krabbe K, Prelovsek O, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52:1409-18. doi: 10.1007/s00125-009-1364-1. 31. Artaza JN, Mehrotra R, Norris KC. Vitamin D and the cardiovascular system. Clin J Am Soc Nephrol. 2009;4:1515-22. doi: 10.2215/CJN.02260409. 32. Amadio P, Cosentino N, Eligini S, Barbieri S, Tedesco CC, Sandrini L, et al. Potential relation between plasma BDNF levels and human coronary plaque morphology. Diagnostics. 2021;11:1010. doi: 10.3390/diagnostics11061010. 33. Kapczinski F, Frey BN, Andreazza AC, Kauer-Sant'Anna M, Cunha Â, Post RM. Increased oxidative stress as a mechanism for decreased BDNF levels in acute manic episodes. Braz J Psychiatry. 2008;30:243-5. doi: 10.1590/s1516-44462008000300011. 34. Sepidarkish M, Farsi F, Akbari-Fakhrabadi M, Namazi N, Almasi-Hashiani A, Hagiagha AM, et al. The effect of vitamin D supplementation on oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Pharmacol Res. 2019;139:141-52. doi: 10.1016/j.phrs.2018.11.011. 35. Aleksova A, Janjusevic M, Gagno G, Pierri A, Padoan L, Fluca AL, et al. The role of exercise-induced molecular processes and vitamin D in improving cardiorespiratory fitness and cardiac rehabilitation in patients with heart failure. Front Physiol. 2022;12:794641. doi: 10.3389/fphys.2021.794641.
|