[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations68634096
h-index2822
i10-index20599

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 30, Issue 5 (12-2022) ::
Journal of Ilam University of Medical Sciences 2022, 30(5): 14-23 Back to browse issues page
Silymarin Effect on Mitophagy Pathway in the Human Colon Cancer HT-29 Cells
Layasadat Khorsandi * 1, Maryam Mombeni2 , Ghasem Saki2 , Neda Bavarsad3
1- ellular and Molecular Research Center, Research Institute of Basic Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran , khorsandi_cmrc@yahoo.com
2- Dept of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
3- Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Abstract:   (1138 Views)
Introduction: The anti-cancer effects of silymarin have been reported in several studies. However, the mechanism of its action in colon cancer cells is not well understood. This study aimed to investigate the effect of silymarin on the mitophagy pathway and the formation of reactive oxygen species (ROS) in human colon cancer cells (HT-29).
Material & Methods: HT-29 cancer cells and NIH-3T3 non-cancer cells were exposed to 0 (control), 25, 50, and 100 μg/ml of silymarin for 48 h. Cell viability, ROS level, mitochondrial membrane potential (MMP), and expression of important mitophagy-related genes including Pink1 (PTEN-induced putative kinase protein 1) and Parkin were examined to evaluate the effects of silymarin.
(Ethic code: IR. AJUMS. CMRC-9503)
Findings: Silymarin significantly reduced the viability percentage of the HT-29 cells depending on the concentration (P<0.05). It also significantly decreased MMP in a concentration-dependent manner while significantly increased ROS formation in the HT-29 cells (P<0.05). In addition, silymarin significantly increased the expression of Pink1 and Parkin genes in a concentration-dependent manner (P<0.05). Concentration of 100 μg/ml of silymarin had the greatest effect on reducing viability and MMP, as well as increasing ROS levels and expression of mitophagy-related genes (P<0.001). Silymarin did not cause significant changes in the viability percentage, ROS level, and MMP of the NIH-3T3 non-cancerous cells at different concentrations.
Discussion & Conclusion: According to the results, silymarin increases the level of ROS by decreasing MMP, thereby inducing mitophagy through the Pink1/Parkin signaling pathway in the HT-29 cells.
 
Keywords: Colon cancer, Mitochondria, Mitophagy, Silymarin
Full-Text [PDF 1323 kb]   (644 Downloads)    
Type of Study: Research | Subject: pharmacology
Received: 2021/12/25 | Accepted: 2022/04/10 | Published: 2022/12/6
References
1. Ochoa-Hernandez A, Giron K, Meier J, Charchalac AP. Current options in the management of colorectal cancer in developing countries: Central America Experience. Curr Colorectal Cancer Rep 2020;16:49-54. doi: 10.1007/s11888-020-00452-5.
2. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol 2019; 14:89-103. doi: 10.5114/pg.2018.81072.
3. Fattahi S, Ardekani AM, Zabihi E, Abedian Z, Mostafazadeh A, Pourbagher R, et al. Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev 2013; 14:5317-23. doi: 10.7314/apjcp.2013.14.9.5317.
4. Agarwal R, Agarwal C, Ichikawa H, Singh RP, Aggarwal BB. Anticancer potential of silymarin: from bench to bed side. Anticancer Res 2006; 26:4457-98.
5. Eo HJ, Park GH, Jeong JB. Inhibition of Wnt signaling by silymarin in human colorectal cancer cells. Biomol Ther 2016;24:380-386. doi: 10.4062/biomolther.2015.154.
6. Hajighasemlou S, Farajollahi M, Alebouyeh M, Rastegar H, Manazi MT, Mirmoghtadaei M, et al. Study of the effect of silymarin on viability of breast cancer cell lines. Adv Breast Cancer Res 2014; 3:100-105. doi: 10.4236/abcr.2014.33015.
7. Wu T, Liu W, Guo W, Zhu X. Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells. Biomed Pharmacother 2016; 81:460-467.doi: 10.1016/j.biopha.2016.04.039.
8. Deep G, Singh RP, Agarwal C, Kroll DJ, Agarwal R. Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: A comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene 2006; 25:1053-69. doi: 10.1038/sj.onc.1209146.
9. Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett 2008; 269:352-62. doi: 10.1016/j.canlet.2008.03.053.
10. Singh RP, Agarwal R. Prostate cancer: Chemoprevention by silibinin, Bench to bedside. Mol Carcinogenesis 2006; 45: 436-42. doi: 10.1002/mc.20223.
11. Basciani S, Vona R., Matarrese P, Ascione B, Mariani S, Cauda R, et al. Imatinib interferes with survival of multi drug resistant Kaposi’s sarcoma cells. FEBS Lett 2007; 581:5897-903. doi: 10.1016/j.febslet.2007.11.069.
12. Khorsandi L, Saki G, Bavarsad N, Mombeini M. Silymarin induces a multi-targeted cell death process in the human colon cancer cell line HT-29. Biomed Pharmacother 2017; 94: 890-97. doi: 10.1016/j.biopha.2017.08.015.
13. Narendra D. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183: 795-803. doi: 10.1083/jcb.200809125.
14. Narendra DP. PINK1is selectively stabilized on impaired mitochondria to activate Parkin. PLos Biol 2010; 8: e1000298. doi: 10.1371/ journal.pbio.1000298.
15. Vives-Bauza C. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 2010; 107: 378-83. doi: 10.1073/pnas.0911187107.
16. Zhu J, Wang KZ , Chu CT. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy 2013; 9: 1663-76. doi: 10.4161/auto.24135.
17. Kubli DA , Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 2012; 111: 1208-21. doi: 10.1161/CIRCRESAHA.112.265819.
18. Banitalebidehkordi M, Ziajahromi N, Sazgar H. Study the effect of Eugenol on CASP8 and CASP9 gnes expression in colon cancer cell lines HT-29. J Ilam Uni Med Sci 2019; 27: 85-96. doi: 10.29252/sjimu.27.5.85
19. Hogan FS, Krishnegowda NK, Mikhailova M, Kahlenberg MS. Flavonoid silibinin inhibits and promotes cell-cycle arrest of human colon cancer. J Surg Res 2007; 143: 58-65. doi: 10.1016/j.jss.2007.03.080.
20. Li W, Mu DG, Song L, Zhang J, Liang J, Wang C, et al. Molecular mechanism of silymarin- induced apoptosisin a highly metastatic lung cancer cell line anip973. Cancer Biother Radiopharm 2011; 26: 317-24. doi: 10.1089/ cbr.2010.0892.
21. Kim SH, Choo GS, Yoo ES, Woo JS, Han SH, Lee JH, et al. Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells. Oncol Rep 2019; 42: 1904-14. doi: 10.3892/or.2019.7295.
22. Tyagi A, Singh RP, Agarwal C, Agarwal R. Silibinin activates. p53-caspase 2 pathway and causes caspase mediated cleavage of Cip1/p21 in apoptosis induction in bladder treatment cell papilloma RT4 cells: Evidence for regulatory loop between p53 and caspase 2. Carcinogenesis 2006; 27: 2269-80. doi: 10.1093/carcin/bgl098.
23. Noh EM, Yi MS, Youn HJ, Lee BK, Lee YR, Han JH et al. Silibinin enhances Ultraviolet-B Induced apoptosis in MCF-7 human breast cancer cells. J Breast Cancer 2011; 14: 8-13. doi: 10.4048/jbc.2011.14.1.8.
24. Yin K, Lee J, Liu Z, Kim H, Martin DR, Wu D, et al. Mitophagy protein PINK1 suppresses colon tumor growth by metabolic reprogramming via p53 activation and reducing acetyl-CoA production. Cell Death Differ 2021; 28: 2421-35. doi: 10.1038/s41418-021-00760-9.
25. Okatsu K, Oka T, Iguchi M. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nature Communication 2012; 3:1-3. doi: 10.1038/ncomms2016.
26. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AHV, Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human Molecular Genetics 2010; 19: 4861-70. doi: 10.1093/hmg/ddq419.
27. Pryde KR, Smith HL, Chau KY, Schapira AHV. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J Cell Biol 2016: 213: 163-71. doi: 10.1083/jcb. 201509003.
28. Lu X, Liu QX, Zhang J, Zhou D, Yang GX, Li MY, et al. PINK1 overexpression promotes cell migration and proliferation via regulation of autophagy and predicts a poor prognosis in lung cancer cases. Cancer Manag Res 2020; 12: 7703-14. doi: 10.2147/CMAR.S262466.
29. Murata H, Sakaguchi M, Jin Y. A new cytosolic pathway from a Parkinson disease-associated kinase, BRPK/PINK1: activation of AKT via mTORC2. J Biol Chem 2011; 286:7182. doi: 10.1074/jbc.M110.179390.
30. Fujiwara M, Marusawa H, Wang HQ. Parkin as a tumor suppressor gene for hepatocellular carcinoma. Oncogene 2008; 27: 6002-11. doi: 10.1038/onc.2008.199
31. Unoki M, Nakamura Y. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 2001; 20: 4457-65. doi: 10.1038/sj.onc.1204608.
32. Vernucci E, Tomino C, Molinari F, Limongi D, Aventaggiato M, Sansone L, et al. Mitophagy and oxidative stress in cancer and aging: focus on sirtuins and nanomaterials. Oxid Med Cell Longev 2019; 2019:6357-87. doi: 10.1155/2019/ 6387357
33. Ramakrishnan G, Lo Muzio L, Elinos‐Báez CM, S, Augustine TA, Kamaraj S, et al. Silymarin inhibited proliferation and induced apoptosis in hepatic cancer cells. Cell Prolif 2009; 42: 229-240. doi: 10.1111/j.1365-2184.2008. 00581. x.
34. Zhang S, Yang Y, Liang Z, Duan W, Yang J, Yan J, et al. Silybin-mediated inhibition of notch signaling exerts antitumor activity in human hepatocellular carcinoma cells. PLoS One 2013; 8: e83699. doi: 10.1371/journal.pone.0083699.
35. Kim TH, Woo JS, Kim YK, Kim KH. Silibinin induces cell death through reactive oxygen species-dependent downregulation of notch-1/ERK/Akt signaling in human breast cancer cells. J Pharmacol Exp Ther 2014; 349: 268-78. doi: 10.1124/jpet.113.207563.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: AJUMS.CMRC-9503


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khorsandi L, Mombeni M, Saki G, Bavarsad N. Silymarin Effect on Mitophagy Pathway in the Human Colon Cancer HT-29 Cells. J. Ilam Uni. Med. Sci. 2022; 30 (5) :14-23
URL: http://sjimu.medilam.ac.ir/article-1-7423-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 30, Issue 5 (12-2022) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.15 seconds with 41 queries by YEKTAWEB 4671