[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2019
Citations62733583
h-index2719
i10-index18478

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 30, Issue 6 (2-2023) ::
Journal of Ilam University of Medical Sciences 2023, 30(6): 61-72 Back to browse issues page
Synthesis of Trimethyl Chitosan Nanoparticles Containing Recombinant BLF1-stxB Protein of Burkholderia Pseudomallei and Evaluation of its Immunogenicity in Mice
Hossein Honari * 1, Seyed mojtaba Aghaie2 , Mohammad Reza Akbari2 , Ayoub Fazeli2
1- Center of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran , honari.hosein@gmail.com
2- Center of Biology, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
Abstract:   (563 Views)
Introduction: The bacterium Burkholderia Pseudomallei is the cause of melioidosis disease. BLF1 plays an important role in the pathogenesis and infection of B. Pseudomallei. STxB has an adjuvant and carrier role and can be produced by mixing vaccine-candidate antigens with this adjuvant to produce a suitable vaccine. This study aimed to construct and evaluate the immunogenicity of trimethyl chitosan nanoparticles containing BLF1-stxB protein by subcutaneous injection.
Material & Methods: In this study, the expression of recombinant BLF1-stxB protein was induced in the expression host, and the protein was purified by affinity chromatography. Then, nanoparticles were fabricated by ion gelation method and the size and shape of nanoparticles were assessed by electron microscopy and injected subcutaneously into mice four times. Antibody titration was evaluated by indirect ELISA. BLF1 toxin was used for immunogenicity.
(Ethic code: 6272)
Findings: The results of this study showed that protein-containing nanoparticles have higher size and PDI, and lower zeta potential than protein-free nanoparticles. The protein charge in nanoparticles was about 65%. The highest antibody titer belonged to the group receiving protein without nanoparticles. The results showed a 75% conservation challenge of the nanoparticle-free protein group.
Discussion & Conclusion: This study showed that the nanoparticle form containing this recombinant protein leads to a weaker immune response, compared to the non-nanoparticle form by injection. The results of the challenge showed that this recombinant chimeric protein provides better protection when subcutaneously injected with an adjuvant.
 
Keywords: Fire, Knowledge, Operating room staff, Performance
Full-Text [PDF 1339 kb]   (261 Downloads)    
Type of Study: Research | Subject: immunology
Received: 2021/11/1 | Accepted: 2022/06/28 | Published: 2023/02/4
References
1. Coenye T, Vandamme P. Diversity and signi-ficance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 2003;5:719-29. doi:10.1046/j.1462-2920.2003.00471.x.
2. Stone R. Infectious disease. Racing to defuse a bacterial time bomb. Science 2007; 317:1022-24. doi: 10.1126/science.317.5841.1022.
3. Lee YH, Chen Y, Ouyang X, Gan YH. Identi-fication of tomato plant as a novel host model for Burkholderia pseudomallei. BMC microbiol 2010;10:1. doi: 10.1186/1471-2180-10-28.
4. Wuthiekanun V, Suputtamongkol Y, Simpson AJH, Kanaphun P, White NJ. Value of throat swab in diagnosis of melioidosis. J clin microbiol 2001; 39: 3801-2. doi.org/10.1128/JCM.39.10.3801-3802.2001.
5. Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology and management. Clin microbiol rev 2005;18: 383-416. doi.org/10.1128/CMR.18.2.383-416.2005.
6. Wongtrakoongate P, Mongkoldhumrongkul N, Chaijan S, Kamchonwongpaisan S, Tung-pradabkul S. Comparative proteomic profiles and the potential markers between Burkholderia pseudomallei and Burkholderia thailandensis. Mol cell probe 2007;21: 81-91. doi.org/10.1016/j.mcp.2006.08.006.
7. Cruz-Migoni A, Hautbergue GM, Artymiuk PJ, Baker PJ, Bokori-Brown M, Chang C-T, et al. A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science 2011; 334: 821-4. doi: 10.1126/science.1211915.
8. Medina-Bolivar F, Wright R, Funk V, Sentz D, Barroso L, Wilkins TD, et al. A non-toxic lectin for antigen delivery of plant-based mucosal vaccines. Vaccine 2003;21:997-1005. doi.org/10.1016/S0264-410X(02)00551-0
9. Akbari M, Saadati M, Honari H, Mohammad Ghorbani H. IpaD-loaded N-trimethyl Chitosan Nanoparticles Can Efficiently Protect Guinea Pigs against Shigella Flexneri. Iran J Immunol 2019; 16: 212-24. doi.org/10.22034/iji.2019.80272.
10. Abkar M, Fasihi-Ramandi M, Kooshki H, Sahebghadam LA. Oral immunization of mice with Omp31-loaded N-trimethyl chitosan nanoparticles induces high protection against Brucella melitensis infection. Int J Nanomedicine 2017;12: 8769-78. doi: 10.2147/IJN.S149774.
11. Masoudi M, Honari H, Abdollah M. Expression of Blf1-Stx B Gene Cassette in E. coli and Investigation Antibody Titer in Mice. J Shahid Sadoughi Uni Med Sci 2017;24: 876-86.
12. Masoudi M, Honari H, Etemadaubi M, Abdollah M. Comparison of the Titers of Produced Antibodies against BLF1 and BLF1-STxB Recombinant Proteins in Laboratory Rats. J Ilam Uni Med Sci 2019;26: 111-21. doi: ‎ 10.29252/sjimu.26.6.111.
13. Bollag D.M, Rozycki MD, Edelstein SJ. Protein methods. Wileyliss NY. 1996.
14. Daniel MB, Rozycki MD, Edelstein S. J. Affinity chromatography. Protein methods. New York: Wiley-Liss, 1996.
15. Walsh MJ, Dodd JE, Hautbergue GM. Ribosome-inactivating proteins: Potent poisons and molecular tools. Virulence 2013; 4: 774-84. doi.org/10.4161/viru.26399.
16. Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM . Public health assessment of potential biological terrorism agents. Emerg Infect Dis 2002; 8: 225-30. doi: 10.3201/eid0802.010164.
17. Malina A, Cencic R, Pelletier J. Targeting translation dependence in cancer. Oncotarget. 2011; 2:76-88. doi: 10.18632/oncotarget.218.
18. Currie BJ. Melioidosis and Burkholderia pseudo-mallei: progress in epidemiology, diagnosis, treatment and vaccination. Curr Opin Infect Dis 2022;35:517-23. doi: 10.1097/QCO.0000000000000869.
19. German RR. Updated guidelines for evaluating public health surveillance systems. MMWR Recomm Rep 2001. 50:1-35.
20. Clemens J, Kotloff K, Kay BA. Generic protocol to estimate the burden of Shigella diarrhoea and dysenteric mortality. Citeseer,1999.
21. Dutta Sh, Dutta D, Dutta P, Matsushita Sh, Kumar Bhattacharya S, Yoshida SH. Shigella dysenteriae serotype 1, Kolkata, India. Emerg Infect Dis 2003; 9:1471-74. doi: 10.3201/eid0911.020652.
22. Imai Y, Ishikawa T, Tanikawa T, Nakagami H, Maekawa T, Kurohane K. Production of IgA monoclonal antibody against Shiga toxin binding subunits employing nasal-associated lymphoid tissue. J Immunol Methods 2005; 302:125-35. doi:org/10.1016/j.jim.2005.05.007.
23. Marcato P, Griener TP, Mulvey GL, Armstrong GD. Recombinant Shiga toxin B-subunit-keyhole limpet hemocyanin conjugate vaccine protects mice from Shigatoxemia. Infect Immun 2005;73:6523-29. doi:org/10.1128/IAI.73.10.6523-6529.2005.
24. Tsuji T, Shimizu T, Sasaki K, Tsukamoto K, Arimitsu H, Ochi S. et al. A nasal vaccine comprising B-subunit derivative of Shiga toxin 2 for cross-protection against Shiga toxin types 1 and 2. Vaccine 2008;26:2092-9. doi:org/10.1016/j.vaccine.2008.02.034.
25. Fujii J, Naito M, Yutsudo T, Matsumoto S, Heatherly DP, Yamada T, et al. Protection by a recombinant Mycobacterium bovis Bacillus Calmette-Guerin vaccine expressing Shiga toxin 2 B subunit against Shiga toxin-producing Escherichia coli in mice. Clin Vaccine Immunol 2012;19:1932-7. doi:org/10.1128/CVI.00473-12.
26. Xu R. Particle characterization: light scattering methods. Vol. 13. Springer Science & Business Media. 2001.
27. Ghalavand M, Saadati M, Salimian J, Abbasi E, Ahmadi A. Synthesis and Immunogenicity Evaluation of Tetanus Toxoid Encapsulated Trimethyl Chitosan Nanoparticles. J Mazandaran Uni Med Sci 2017;26:54-62.
28. Malik A, Gupta M, Mani R, Gogoi H, Bhatnagar R. Trimethyl chitosan nanoparticles encapsulated protective antigen protects the mice against anthrax. Front Immunol 2018; 20: 562. doi.org/10.3389/fimmu.2018.00562
29. Soleimani N, Mohabati-Mobarez A, Atyabi F, Hasan-Saraf Z, Haghighi MA. Preparation of chitosan nanoparticles carrying recombinant Helicobacter pylori neutrophil-activating protein. J Mazandaran Uni Med Sci 2014; 23:134-44.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Honari H, Aghaie S M, Akbari M R, Fazeli A. Synthesis of Trimethyl Chitosan Nanoparticles Containing Recombinant BLF1-stxB Protein of Burkholderia Pseudomallei and Evaluation of its Immunogenicity in Mice. J. Ilam Uni. Med. Sci. 2023; 30 (6) :61-72
URL: http://sjimu.medilam.ac.ir/article-1-7334-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 30, Issue 6 (2-2023) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.16 seconds with 41 queries by YEKTAWEB 4643