[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Publication Ethics::
Peer Review Process::
Indexing Databases::
For Authors::
For Reviewers::
Subscription::
Contact us::
Site Facilities::
::
Google Scholar Metrics

Citation Indices from GS

AllSince 2020
Citations68933447
h-index2819
i10-index20879

..
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 29, Issue 6 (1-2022) ::
Journal of Ilam University of Medical Sciences 2022, 29(6): 20-27 Back to browse issues page
Evaluation of Anti-Cancer Effects of Caspian Cobra (Naja naja oxiana) Snake Venom in Comparison with Doxorubicin in HeLa Cancer Cell Line and Normal HFF Fibroblast
Fatemeh Javani Jouni1 , Jaber Zafari2 , Elaheh Shams3 , Parviz Abdolmaleki4 , Ali asghar Rastegari * 5
1- Dept of Biomedical Engineering, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
2- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3- Behbahan Faculty of Medical Sciences and Health Services, Behbahan, Iran
4- Dept of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
5- Dept of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran , aarastegari@gmail.com
Abstract:   (1992 Views)
Introduction: Cancer is the leading cause of death in most countries. There are several methods used to treat cancer. Doxorubicin is one of the most important chemotherapy drugs that has several side effects, such as infertility, hyperuricemia, neuropathy, and cardiomyopathy. This study aimed to evaluate the anti-cancer effects of Naja naja oxiana in comparison with doxorubicin in Hela (Human cervical cancer) and HFF (Human foreskin fibroblast) cell line.
Material & Methods: Hela and normal fibroblast cancer cell lines were exposed to different concentrations (1, 10, 50, 100, and 500 μg/ml) of snake venom and doxorubicin. The MTT method was used to evaluate the IC50 (Inhibitory Concentration) for toxins and drugs. Finally, the results were analyzed using SPSS software (version 19).
Findings: The results show that with increasing concentration and time of treatment with snake venom and doxorubicin, the percentage of Hela and fibroblasts living cells decreases. The highest decrease in the percentage of the viable cells was observed in the Hela cancer cell line treated with a concentration of 500 μg/ml snake venom for 48 h.
Discussion & Conclusion: Snake venom can have a significant inhibitory effect on the percentage of living Hela cancer cells in comparison with doxorubicin.
 
Keywords: Doxorubicin, Human cervical cancer cells, Snake venom
Full-Text [PDF 528 kb]   (860 Downloads)    
Type of Study: Research | Subject: toxicology
Received: 2021/06/3 | Accepted: 2021/11/29 | Published: 2022/02/4
References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics. Cancer J Clin2019;69:30-4. doi. 10.3322/caac.21551
2. Afsar B, Afsar R, Ertuglu L, Kuwabara M, Ortiz A, Covic A, et al. Renin angiotensin system and cancer: epidemiology cell signaling genetics and epigenetics. Clini Trans Oncol 2021;23:682-96. doi. 10.1007/s12094-020-02488-3.
3. Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health2019;9:217-22. doi.10.2991/jegh.k.191008.001.
4. Kumar P, Singh G, Rai V. Evaluation of COMT gene rs4680 polymorphism as a risk factor for endometrial cancer. Indian J Clin Biochem 2020;35:63-71. doi.10.1007/s12291-018-0799-x.
5. Nevala WK, Buhrow SA, Knauer DJ, Reid JM, Atanasova EA, Markovic SN Antibody targeted chemotherapy for the treatment of melanoma. Can Res 2016;76:3954-64. doi.10.1158/0008-5472.CAN-15-3131.
6. Savard J, Ivers H, Savard MH, Morin CM. Cancer treatments and their side effects are associated with aggravation of insomnia: results of a longitudinal study. Cancer 2015;121:1703-11. doi.10.1002/cncr.29244.
7. Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics 2016. Cancer J Clin 2016;66:271-89. doi.10.3322/caac.21349.
8. Fanipakdel A, Elyasi S, Mahdikooshiar M, Jannatiyazdanabad M, Marouzi A, Asgarian M. Identification and analysis of adverse drug reactions associated with colorectal and gastric cancer chemotherapy in hospitalized patients. Med J Mashhad Uni Med Sci2018;61:921-30.
9. Wakharde AA, Awad AH, Bhagat A, Karuppayil SM. Synergistic activation of doxorubicin against cancer a review. Am J Clin Microbiol Antimic2018; 1: 1009.
10. Kelleni MT, Amin EF, Abdelrahman AM. Effect of metformin and sitagliptin on doxorubicin-induced cardiotoxicity in Rats impact of oxidative stress inflammation and apoptosis. J Toxicol 2015; 1-8. doi.10.1155/2015/424813
11. Rivankar S. An overview of doxorubicin formulations in cancer therapy. J Can Res Therap 2015; 10: 853. doi.10.4103/0973-1482.13926
12. Riyasat A, Zeenat M, Ghulam MD. New anticancer agents recent developments in tumor therapy. Ant Can Res2012; 32: 2999-3006.
13. Perezpeinado C, Defaus S, Andreu D. Hitchhiking with Nature snake venom peptides to fight cancer and superbugs. Toxins 2020;12:255. doi.10.3390/toxins12040255.
14. Urra FA, Arayamaturana R. Putting the brakes on tumorigenesis with snake venom toxins new molecular insights for cancer drug discovery. Sem Can Biol 2020; 2:221-5. doi.10.1016/j.semcancer.
16. Li L, Huang J, Lin Y. Snake venoms in cancer therapy: past, present and future. Toxins2018;10:346. doi.10.3390/toxins10090346.
17. Ebrahim K, Vatanpour H, Zare A, Shirazi FH, Nakhjavani M. Anticancer activity a of caspian cobra snake venom in human cancer cell lines via induction of apoptosis. Iranian J Pharm Res2016;15:101.
18. Strizhkov B, Blishchenko EY, Satpaev D, Karelin A. Both neurotoxin II from venom of Naja naja oxiana and its endogeneous analogue induce apoptosis in tumor cells. FEBS lett 1994;340:22-4. doi.10.1016/0014-5793(94)80165-7.
19. Shams E, Javanijouni F, Zafari J, Monajemi ., Abdolmaleki P. Effect of static magnetic field on the rate of proliferation and viability in hela cancer cells and normal fibroblasts. Horiz Med Sci 2017;23:7-12.
20. Zamanian M, Noormohammadi Z, Akbarzadeh T, Bineshian F, Sharifi Z. Comparison of MTT and trypan blue methods in determining the survival of vero cell line in HSV1 infection. Sci J Iran Blood Trans Org2021;18: 18-26.
21. Ulukaya E, Colakogullari M, Wood EJ. Interference by anti-cancer chemotherapeutic agents in the MTT-tumor chemosensitivity assay. Chemotherapy 2004; 50:43-50. doi.10.1159/000077285.
22. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA: a cancer j Clin 2019;69:363-85. doi.10.3322/caac.21565.
23. Esghaei M, Ghaffari H, Esboei BR, Tapeh ZE, Salim FB, Motevalian M. Evaluation of anticancer activity of Camellia silences in the Caco2 colorectal cancer cell line. Asian Pacif J Can Preve2018;19:1697. doi.10.22034/APJCP.2018.19.6.1697.
24. Thorn CF, Oshiro C, Marsh S, et al. Doxorubicin pathways pharmacodynamics and adverse effects. Pharm Genom2011; 21: 440-6. doi.10.1097/FPC. 0b013e32833ffb56.
25. Gottesman MM. Mechanisms of cancer drug resistance. Ann Rev Med2002;53:615-27. doi. 10.1146/annurev.med.53.082901.103929.
26. Chaisakul J, Hodgson WC, Kuruppu S, Prasongsook N. Effects of animal venoms and toxins on hallmarks of cancer. J Can 2016;7:1571. doi.10.7150/jca.15309. ecollection 2016.
27. Pal P, Roy S, Chattopadhyay S, Pal TK. Medicinal value of animal venom for treatment of cancer in humans a review. World Sci New2015;22:128-44.
28. Ajit S, Narang AS, Divyakant S, Desai DS. anticancer drug development. Pharm Pers Can Therap 2009, 49-92. doi.10.1007/978-1-4419-0131-6_2.
29. Chatterjee B. Animal venoms have potential to treat cancer. Cur Top Med Chem2018;18:2555-66. doi.10.2174/1568026619666181221120817 .
30. Yang SH, Chien CM, Lu MC, Lu YJ, Wu ZZ, Lin SR. Cardiotoxin III induces apoptosis in k562 cells through a mitochondrial mediated pathway. Clin Exp Pharmacol Physiol 2005;32:515-20. doi.10.1111/j.1440-1681.2005.04223.x.
31. Barati M, Davoudi DF.[Evaluation of toxicity and anticancer activity of isolated fraction from the venom of Iranian cobra snake on acute lymphoblastic leukemia cells]. J Cell Tis 2018;8:250-260. (Persian) doi. 10.29252/JCT.8.3.250.
32. Kollipara PS, Heewon CJH, Jung YY, Yoon HS, Park MH, Song MJ, et al. Enhanced anti-cancer effect of snake venom activated NK cells on lung cancer cells by inactivation of NF-κB. Biomole Therap 2014;22:106. doi.10.4062/biomolther.2013.103.
33. Zakraoui O, Marcinkiewicz C, Aloui Z, Othman H, Grepin R, Haoues M, et al. Lebein a snake venom disintegrin suppresses human colon cancer cells proliferation and tumor induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression. Mole Carcinogene 2017;56:18-35. doi.10.1002/mc.22470
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA

Ethics code: IR.IAU.FALA.REC.1398.301



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javani Jouni F, Zafari J, Shams E, Abdolmaleki P, Rastegari A A. Evaluation of Anti-Cancer Effects of Caspian Cobra (Naja naja oxiana) Snake Venom in Comparison with Doxorubicin in HeLa Cancer Cell Line and Normal HFF Fibroblast. J. Ilam Uni. Med. Sci. 2022; 29 (6) :20-27
URL: http://sjimu.medilam.ac.ir/article-1-7123-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 29, Issue 6 (1-2022) Back to browse issues page
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.14 seconds with 41 queries by YEKTAWEB 4671