1. Calvopina DA, Noble C, Weis A, Hartel GF, Ramm GA. Supersonic shear wave elastography and APRI for the detection and staging of liver disease in pediatric cystic fibrosis. J Cyst Fibros2019; 2:1-6. doi.10.1016/j.jcf.2019.06.017 2. Lewindon PJ, Puertolas-Lopez MV, Ramm LE, Noble C, Ramm GA. Accuracy of transient elastography data combined with APRI in detection and staging of liver disease in pediatric patients with cystic fibrosis. Clin Gastroenterol Hep 2019; 17: 2561-9. doi.10.1016/j.cgh.2019.03.015. 3. Vanderlocht J, Cruys MVD, Stals F, Bakker L, Damoiseaux J. Multiplex autoantibody detection for autoimmune liver diseases and autoimmune gastritis. J Immunolo Meth 2017; 448: 21-5. doi.10.1016/j.jim.2017.05.003. 4. Gharehchopogh FS, Mousavi SK. [A decision support system for diagnosis of diabetes and hepatitis. based on the combination of particle swarm optimization and firefly algorithm]. J Health Bio Inform 2019; 6: 32-45. (Persian) 5. Gharehchopogh FS, Shayanfar H, Gholizadeh H. A comprehensive survey on symbiotic organisms search algorithms. Art Int Rev 2019; 1-48. doi.10.1007/s10462-019-09733-4 6. Gharehchopogh FS, Gholizadeh H. A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol Comput2019; 48: 1-24. doi. 10.1016/j.swevo.2019.03.004 7. Gharehchopogh FS, FarokhZad MR. [Determining fuzzy logic parameters by using genetic algorithm for the diagnosis of liver disease]. J Health a Bio Info2018; 5: 384-39. (Persian) 8. Abdar M, Zomorodimoghadam M, Das R, Ting IH. Performance analysis of classification algorithms on early detection of liver disease. Exp Syst Appl2017; 67: 239-51. doi.10.1016/j.eswa.2016.08.065 9. Joloudari JH, Saadatfar H, Dehzangi A, Shamshirband S. Computer aided decision-making for predicting liver disease using PSO based optimized SVM with feature selection. Info Med Unlocked 2019; 17: 1-17. doi.org/10.1016/j.imu.2019.100255 10. Pourpanah F, Tan CJ, Lim CP, Mohamad J. A Q-learning based multi agent system for data classification. Appl Soft Comput 2017; 52: 519-31. doi. 10.1016/j.asoc.2016.10.016 11. Weng CH, Cheng T, Han RP. Disease prediction with different types of neural network classifiers. Tel Info 2016; 33: 277-92. doi.10.1016/j.tele.2015.08.006 12. Liang C, Peng L. An automated diagnosis system of liver disease using artificial immune and genetic algorithms. J Med Syst 2013; 2:1-10. doi.10.1007/s10916-013-9932-9 13. Kumar P, Thakur RS. Diagnosis of liver disorder using fuzzy adaptive and neighbor weighted k-nn method for lft imbalanced data. Int Con Struc Syst 2019; 3:1-5. doi.10.1109/ICSSS.2019.8882861 14. Rajeswari P, Reena GS. Analysis of liver disorder using data mining algorithm. Global J Comput Sci Technol2010; 2:71-6. 15. Mirjalili S. The ant lion optimizer. Adv Eng Soft2015; 83: 80-98. doi. 10.1016/j.advengsoft.2015.01.010 16. Martin B. Instance Based Learning: Nearest Neighbour with Generalisation. Uni Waikato Dept Comput Sci Newzealand1995; 95:1-76. 17. Mahmoudi M, Gharehchopogh FS. an improvement of shuffled frog leaping algorithm with a decision tree for feature selection in text document classification. CSI J Compu Sci Eng 2018; 16: 60-72. 18. Orooji A, Langarizadeh M. Evaluation of the effect of feature selection and different kernel functions on svm performance for breast cancer diagnosis. J Health Biomed Info2018; 5:244-51. doi.jhbmi.ir/article-1-284-en.html 19. Allahverdipour A, Gharehchopogh FS. An improved K-nearest neighbor with crow search algorithm for feature selection in text documents classification. J Adv Compu Res 2018; 9: 37-48. doi.jacr.iausari.ac.ir/article_655529.html 20. Jain S, Shukla S, Wadhvani R. Dynamic selection of normalization techniques using data complexity measures. Exp Syst Appl 2018; 106: 252-62. doi. 10.1016/j.eswa.2018.04.008 21. Han J, Kamber M. Data mining concepts and techniques. 2 th ed. Morgan Kuafmann Publication. 2006; P.133-9. doi.10.1016/C2009-0-61819-5 22. Wu H, Yang S, Huang Z, He J, Wang X. Type 2 diabetes mellitus prediction model based on data mining. Info Med Unlocked 2018; 10:100-07. doi.10.1016/j.imu.2017.12.006 23. Edla DR, Cheruku R. Diabete finder: a bat optimized classification system for type 2 diabetes. Proce Comput Sci 2017; 115: 235-42. doi.10.1016/j.procs.2017.09.130 24. Abdar M, Yen NY, Hung JCS. Improving the diagnosis of liver disease using multilayer perceptron neural network and boosted decision trees. J Med Bio Eng2018; 38: 953-65. doi.10.1007/s40846-017-0360-z 25. Bashir S, Qamar U, Khan FH. Intelli health a medical decision support application using a novel weighted multi-layer classifier ensemble framework. J Biomed Info 2015; 59: 185-200. doi.10.1016/j.jbi.2015.12.001 26. Zhou J, Lai Z, Gao C, Miao D, Yue X. Rough possibilistic C-means clustering based on multigranulation approximation regions and shadowed sets. Knowl Base Syst 2018; 160: 144-66. doi.10.1016/j.knosys.2018.07.007 27. Singh J, Bagga S, Kaur R. Software based prediction of liver disease with feature selection and classification techniques. Proce Comput Sci2020; 167: 1970-80. doi. 10.1016/j.procs.2020.03.226 28. Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng Soft 2014; 69: 46-61. doi.10.1016/j.advengsoft.2013.12.007 29. Kennedy J, Eberhart RC. Particle swarm optimization. Proce Int Con Neur Net 1995;3: 1942-8. doi.10.1109/ICNN.1995.488968 30. Karaboga D. An idea based on honeybee swarm for numerical optimization technical report tr06 Erciyes University engineering faculty. Com Eng Dep2005; 4:81-6. doi. 015d/f4d97ed1f541752842c49d12e429a785460b.pdf 31. Mirjalili S, Lewis A. The whale optimization algorithm. Adv Eng Soft 2016; 95: 51-67. doi.10.1016/j.advengsoft.2016.01.008
|