1. Halim SA, Waqas M, Khan A, Al-Harrasi A. In silico prediction of novel inhibitors of SARS-CoV-2 main protease through structure-based virtual screening and molecular dynamic simulation. Pharmaceuticals 2021;14:896. doi.org/ 10.3390/ph14090896 2. Kase Y, Okano H. Neurological pathogenesis of SARS-CoV-2 (COVID-19): from virological features to clinical symptoms. Inflamm Regen 2021;41:1-7. doi.org/10.1186/s41232-021-00165-8 3. Rahbar-Karbasdehi E, Rahbar-Karbasdehi F. Clinical challenges of stress cardiomyopathy during coronavirus 2019 epidemic. Cell Mol Biomed Rep 2021;1: 88-90. doi.org/10.55705/cmbr.2021.145790.1018 4. Fazelinasab B. Biological Evaluation Of Coronaviruses And The Study Of Molecular Docking, Linalool, And Thymol As Orf1ab Protein Inhibitors And The Role Of Sars-Cov-2 Virus In Bioterrorism. J Ilam Uni Med Sci 2021;28:7796. doi.org/10.29252/sjimu.28.6.77 5. Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res 2020;7:1-10. doi.org/10.1186/s40779-020-00240-0 6. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270-73. doi.org/10.1038/s41586-020-2012-7 7. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol 2000;74:8913-21. doi.org/ 10.1128/JVI.74.19.8913-8921.2000 8. Van Der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, et al. Identification of a new human coronavirus. Nat Med 2004;10:368-73. doi.org/10.1038/nm1024 9. Yang D, Leibowitz JL. The structure and functions of coronavirus genomic 3′ and 5′ ends. Virus Res 2015;206:120-33. doi.org/10.1016/j.virusres.2015.02.025 10. Drosten C, Günther S, Preiser W, Van Der Werf S, Brodt H-R, Becker S, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348:1967-76. doi.org/10.1056/NEJMoa030747 11. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019;17:181-92. doi.org/10.1038/s41579-018-0118-9 12. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367:1814-20. doi.org/10.1056/NEJMoa1211721 13. Yadav R, Chaudhary JK, Jain N, Chaudhary PK, Khanra S, Dhamija P, et al. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells 2021;10:821. doi.org/10.3390/cells10040821 14. Chen W, Wang Z, Wang Y, Li Y. Natural bioactive molecules as potential agents against SARS-CoV-2. Front Pharmacol 2021;12. doi.org/10.3389/ fphar.2021.702472 15. Kumar A, Choudhir G, Shukla SK, Sharma M, Tyagi P, Bhushan A, et al. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J Biomol Struct Dyn 2021;39:3760-70. doi.org/10.1080/07391102.2020.1772112 16. Hussein R, Elkhair H. Molecular docking identification for the efficacy of some zinc complexes with chloroquine and hydroxy-chloroquine against main protease of COVID-19. J Mol Struct 2021;1231:129979. doi.org/10.1016/j.molstruc.2021.129979 17. Gyebi GA, Elfiky AA, Ogunyemi OM, Ibrahim IM, Adegunloye AP, Adebayo JO, et al. Structure-based virtual screening suggests inhibitors of 3-chymotrypsin-like protease of SARS-CoV-2 from Vernonia amygdalina and Occinum gratissimum. Comput Biol Med 2021;136:104671. doi.org/10.1016/j.compbiomed.2021.104671 18. Fontanet A, Autran B, Lina B, Kieny MP, Karim SSA, Sridhar D. SARS-CoV-2 variants and ending the COVID-19 pandemic. The Lancet 2021;397:952-54. doi.org/10.1016/S0140-6736 (21)00370-6 19. Volkan E. COVID-19: Structural considerations for virus pathogenesis, therapeutic strategies and vaccine design in the Novel SARS-CoV-2 Variants Era. Mol Biotechnol 2021;63:885-97. doi.org/10.1007/s12033-021-00353-4 20. Dai W, Zhang B, Jiang X-M, Su H, Li J, Zhao Y, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020;368:1331-5. doi.org/10.1126/science.abb4489 21. Zandi H, Harismah K. Computer-based tools for structural characterizations and activity specifications of natural products: a quick review. Lab-in-Silico 2021;2:50-54. doi.org/10.22034/ labinsilico21021050 22. Romano JD, Tatonetti NP. Informatics and computational methods in natural product drug discovery: a review and perspectives. Front Genet 2019;10:368. doi.org/10.3389/fgene.2019.00368 23. Orhan IE, Senol Deniz FS. Natural products as potential leads against coronaviruses: could they be encouraging structural models against SARS-CoV-2? Nat prod bioprospect 2020;10:171-86. doi.org/10.1007/s13659-020-00250-4 24. Pohl F, Kong Thoo Lin P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: in vitro, in vivo and clinical trials. Molecules 2018;23:3283. doi.org/10.3390/molecules23123283 25. Jo S, Kim S, Shin DH, Kim M-S. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem 2020;35:145-51. doi.org/10.1080/14756366.2019.1690480 26. Rupasinghe H. Special Issue “flavonoids and their disease prevention and treatment potential”: Recent advances and future perspectives. Molecules 2020;25:4746. doi.org/10.3390/ molecules 25204746 27. Alzaabi MM, Hamdy R, Ashmawy NS, Hamoda AM, Alkhayat F, Khademi NN, et al. Flavonoids are promising safe therapy against COVID-19. Phytochem Rev 2021:1-22. doi.org/10.1007/s11101-021-09759-z 28. Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA‐dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn 2021;39:6249-64. doi.org/10.1080/07391 102.2020.1796810 29. Tallei TE, Tumilaar SG, Niode NJ, Kepel BJ, Idroes R, Effendi Y, et al. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: a molecular docking study. Scientifica 2020;2020. doi.org/10.1155/2020/6307457. eCo-llection 2020 30. Priyandoko D, Widowati W, Subangkit M, Jasaputra D, Wargasetia T, Sholihah I, et al. Molecular docking study of the potential relevance of the natural compounds isoflavone and myricetin to COVID-19. Int J Bioautomation 2021;25:271. doi.org/10.7546/ijba.2021.25.3.000796 31. Rehman MT, AlAjmi MF, Hussain A. Natural compounds as inhibitors of SARS-CoV-2 main protease (3CLpro): A molecular docking and simulation approach to combat COVID-19. Curr Pharm Des 2021;27:3577-89. doi.org/10.2174/1381612826999201116195851 32. Mouffouk C, Mouffouk S, Mouffouk S, Hambaba L, Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur J Pharmacol 2021;891:173759. doi.org/10.1016/j.ejphar.2020.173759 33. Alrasheid AA, Babiker MY, Awad TA. Evaluation of certain medicinal plants compounds as new potential inhibitors of novel corona virus (COVID-19) using molecular docking analysis. In Silico Pharmacol 2021;9:1-7. doi.org/10.1007/ s40203-020-00073-8 34. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000; 44: 235-49. doi.org/10.1016/s1056-8719(00)00107-6 35. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem 2000;43:3867-77. doi.org/10. 1021/jm000292e 36. Goel RK, Singh D, Lagunin A, Poroikov V. PASS-assisted exploration of new therapeutic potential of natural products. Med Chem Res 2011;20:1509-14. doi.org/10.1007/s00044-010-9398-y 37. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J Med Chem 2001;44:1841-46. doi.org/10.1021/ jm015507e 38. Arora S, Lohiya G, Moharir K, Shah S, Yende S. Identification of potential flavonoid inhibitors of the SARS-CoV-2 main protease 6YNQ: a molecular docking study. Digital Chin Med 2020;3:239-48. doi.org/10.1016/j.dcmed.2020.12.003 39. Owis AI, El-Hawary MS, El Amir D, Aly OM, Abdelmohsen UR, Kamel MS. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Adv 2020;10:19570-75. doi.org/10.1039/D0RA03582C 40. Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking and simulation studies. PLoS One 2020;15:e0240653. doi.org/10.1371/ journal.pone.0240653 41. Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn 2021;39:3347-57. doi.org/10.1080/07391102.2020.1763201 42. Omrani M, Bayati M, Mehrbod P, Bardazard KA, Nejad-Ebrahimi S. Natural products as inhibitors of COVID-19 main protease–A virtual screening by molecular docking. Pharm Sci 2021;27(Covid-19):S135-48. doi.org/10.34172/PS.2021.1
|