[صفحه اصلی ]   [Archive] [ English ]  
:: درباره نشريه :: صفحه اصلي :: آخرين شماره :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
آرشیو مجله و مقالات::
نمایه ها::
برای نویسندگان::
هزینه چاپ::
برای داوران::
ثبت نام و اشتراک::
تماس با ما::
تسهیلات پایگاه::
سیاست های نشریه ::
بیانیه اخلاقی::
ثبت شکایت::
::
Citation Indices from GS

Citation Indices from GS

AllSince 2020
Citations68983526
h-index2919
i10-index19978
..
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
ثبت شده در

AWT IMAGE

AWT IMAGE

..
:: دوره 33، شماره 1 - ( 1-1404 ) ::
جلد 33 شماره 1 صفحات 126-111 برگشت به فهرست نسخه ها
بررسی اثر سیتوتوکسیک عصارۀ آبی گیاه اسپند بر ردۀ سلولی HCT116 مقاوم به اگزالی‌پلاتین و ارزیابی بیان ژن‌ BAX
زهرا سلیمی زاده1 ، ستار طهماسبی انفرادی2 ، طیبه مجیدی زاده1 ، راضیه جلال3 ، فروزنده محجوبی*4
1- گروه ژنتیک پزشکی، پژوهشکدۀ ملی مهندسی ژنتیک و بیوتکنولوژی، تهران، ایران
2- گروه بیوتکنولوژی گیاهی، پژوهشکدۀ ملی مهندسی ژنتیک و بیوتکنولوژی، تهران، ایران
3- گروه شیمی، دانشکدۀ علوم، دانشگاه فردوسی مشهد، مشهد، ایران
4- گروه ژنتیک پزشکی، پژوهشکدۀ ملی مهندسی ژنتیک و بیوتکنولوژی، تهران، ایران ، frouz@nigeb.ac.ir
چکیده:   (171 مشاهده)
مقدمه: سرطان کولورکتال یکی از شایع‌ترین تومورهای بدخیم دستگاه گوارش در جهان است. اگزالی‌پلاتین یک داروی شیمیدرمانی مؤثر برای درمان سرطان کولورکتال است. بااین‌حال، استفاده طولانی‌مدت از این دارو اغلب به مقاومت دارویی منجر می‌شود. توسعۀ روش‌هایی برای کاهش مقاومت سلول‌های سرطان کولورکتال به اگزالی‌پلاتین بسیار مهم است. اسپند درمان ضدسرطان رایجی در طب سنتی است.
مواد و روش­ها: در این تحقیق از دوزهای مختلف عصارۀ آبی دانه‌های اسپند برای تیمار سلول‌های HCT116 مقاوم به اگزالی‌پلاتین به مدت 24 و 48 ساعت استفاده شد. زنده‌ماندنی سلولها با استفاده از روش متیل تیازول تترازولیوم تعیین گردید؛ سپس استخراج RNA از سلول‌های تیمارشده (IC50) و سلول‌های کنترل انجام شد. برای اندازه‌گیری غلظت RNAهای استخراج‌شده از نانودراپ استفاده گردید؛ سپس از RNAهای استخراج‌شده cDNA سنتز شد و میزان بیان ژن BAX با استفاده از Real-Time PCR بررسی گردید. در این مطالعه، میزان fold change با نرم‌افزار REST محاسبه شد؛ همچنین برای تجزیه‌وتحلیل آماری از نرم افزار Graph Pad Prism 8 و آزمون t- test میان نمونه‌های کنترل و تیمار استفاده گردید. P کمتر از 05/0 معنی دار در نظر گرفته شد.
یافته ­های پژوهش: نتایج تجزیه‌وتحلیل نشان داد که میان افزایش غلظت عصاره و درصد سلول‌های مرده ارتباط معنی‌داری وجود دارد. میزان سمیت سلولی عصارۀ آبی دانه‌های اسپند از 24 ساعت به 48 ساعت، در ردۀ سلولی HCT116 مقاوم به اگزالی‌پلاتین افزایش معنی داری داشت. علاوه بر این، افزایش قابل‌توجه و معنادار در سطح بیان نسبی ژن BAX در مقایسه با گروه کنترل مشاهده شد (P<0.001).
بحث و نتیجه‌گیری: در این مطالعه مشاهده گردید که اثر سایتوتوکسیک عصارۀ آبی اسپند وابسته به دوز و زمان بود. عصارۀ آبی اسپند این توانایی را دارد که با تنظیم ژن‌های آپوپتوز، ازجمله تقویت ژنهای پروآپوپتوز مانند BAX، باعث مرگ سلولی در سلولهای سرطان کولورکتال شود. نتایج نشان می‌دهد که عصارۀ آبی اسپند میتواند به‌طور بالقوه در درمان سلولهای سرطان کولورکتال مقاوم به دارو مفید باشد.

 
واژه‌های کلیدی: اگزالی‌پلاتین، BAX، سرطان کولورکتال، عصارۀ آبی، P. harmala
متن کامل [PDF 1056 kb]   (38 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک
دریافت: 1403/7/3 | پذیرش: 1403/10/29 | انتشار: 1404/1/27
فهرست منابع
1. Avella P, Vaschetti R, Cappuccio M, Gambale F, Rafanelli F, Brunese M, et al. The role of liver surgery in simultaneous synchronous colorectal liver metastases and colorectal cancer resections: a literature review of 1730 patients underwent open and minimally invasive surgery. Minerva Surg. 2022;77:582-90. doi: 10.23736/S2724-5691.22.09716-7.
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-49. doi: 10.3322/caac.21660.
3. Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2004;22:23-30. doi: 10.1200/JCO.2004.09.046.
4. Rödel C, Graeven U, Fietkau R, Hohenberger W, Hothorn T, Arnold D, et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16:979-89. doi: 10.1016/S1470-2045(15)00159-X.
5. Adebayo AS, Agbaje K, Adesina SK, Olajubutu O. Colorectal cancer: disease process, current treatment options, and future perspectives. Pharmaceutics. 2023;15:2620. doi: 10.3390/pharmaceutics15112620.
6. Yin J, Wang L, Wang Y, Shen H, Wang X, Wu L. Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF-β/Smad2/3 signaling pathway. Onco Targets Ther. 2019;12:3893. doi: 10.2147/OTT.S199601.
7. Han W, Yin H, Ma H, Wang Y, Kong D, Fan Z. Curcumin regulates ERCC1 expression and enhances oxaliplatin sensitivity in resistant colorectal cancer cells through its effects on miR-409-3p. Evid Based Complement Alternat Med. 2020;2020. doi: 10.1155/2020/8394574.
8. Wen K, Fu Z, Wu X, Feng J, Chen W, Qian J. Oct-4 is required for an antiapoptotic behavior of chemoresistant colorectal cancer cells enriched for cancer stem cells: effects associated with STAT3/Survivin. Cancer Lett. 2013;333:56-65. doi: 10.1016/j.canlet.2013.01.009.
9. Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer: mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci. 2000;11:265-83. doi: 10.1016/s0928-0987(00)00114-7.
10. Schuell B, Gruenberger T, Kornek G, Dworan N, Depisch D, Lang F, et al. Side effects during chemotherapy predict tumour response in advanced colorectal cancer. Br J Cancer. 2005;93:744-8. doi: 10.1038/sj.bjc.6602783.
11. Fridlender M, Kapulnik Y, Koltai H. Plant derived substances with anti-cancer activity: from folklore to practice. Front Plant Sci. 2015;6:163161. doi: 10.3389/fpls.2015.00799.
12. Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol. 2020;10:1614. doi: 10.3389/fphar.2019.01614.
13. Browning DD, Kwon IK, Wang R. cGMP-dependent protein kinases as potential targets for colon cancer prevention and treatment. Future Med Chem. 2010;2:65-80. doi: 10.4155/fmc.09.142.
14. Vijayalakshmi M, Meganathan S, Surendhar SK, Umamaheswari A, Lakshmana Prabu S. Exploring the Systematic Anticancer Mechanism in Selected Medicinal Plants: A Review. Oncol Adv. 2024;2:141-7. doi: 10.14218/OnA.2024.00012.
15. Benarba B, Pandiella A. Colorectal cancer and medicinal plants: Principle findings from recent studies. Biomed Pharmacother. 2018;107:408-23. doi : 10.1016/j.biopha.2018.08.006.
16. Mashreghi M, Niknia S. The effect of Peganum harmala and Teucrium polium alcoholic extracts on growth of Escherichia coli O157. Jundishapur J Microbiol. 2012;5:511-5. doi:10.5812/jjm.3665.
17. Ababou A, Chouieb M, Bouthiba A, Saidi D, Bouzina MMH, Mederbal K. Spatial pattern analysis of Peganum harmala on the salted lower Chelif plain, Algeria. Turk J Bot. 2013;37:111-21. doi:10.3906/bot-1202-16.
18. Lamchouri F, Zemzami M, Jossang A, Abdellatif A, Israili ZH, Lyoussi B. Cytotoxicity of alkaloids isolated from Peganum harmala seeds. Pak J Pharm Sci. 2013;26:699-706.
19. Jalali A, Dabaghian F, Zarshenas MM. Alkaloids of Peganum harmala: Anticancer biomarkers with promising outcomes. Curr Pharm Des. 2021;27:185-96. doi:10.2174/1381612826666201125103941.
20. Moloudizargari M, Mikaili P, Aghajanshakeri S, Asghari MH, Shayegh J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn Rev. 2013;7:199. doi: 10.4103/0973-7847.120524.
21. Moussa TA, Almaghrabi OA. Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy. Saudi J Biol Sci. 2016;23:397-403. doi: 10.1016/j.sjbs.2015.04.013.
22. Niazi S, Tahmasebi Enferadi S, Ghaderitabar H. Variation of Main Alkaloids and Fatty Acids among Five Natural Populations of Peganum harmala L. from Iran. J Med Plants By-Prod. 2021;10:45-52. doi:10.22092/jmpb.2020.128202.1151.
23. Tarkowská D. A fast and reliable UHPLC–MS/MS-based method for screening selected pharmacologically significant natural plant indole alkaloids. Molecules. 2020;25:3274. doi: 10.3390/molecules25143274.
24. Burman MD, Bag S, Ghosal S, Karmakar S, Pramanik G, Chinnadurai RK, et al. Exploring the Structural Importance of the C3═ C4 Double Bond in Plant Alkaloids Harmine and Harmaline on Their Binding Interactions with Hemoglobin. ACS Omega. 2023;8:37054-64. doi: doi: 10.1021/acsomega.3c04432.
25. Uddin MJ, Xu S, Crews BC, Aleem AM, Ghebreselasie K, Banerjee S, et al. Harmaline analogs as substrate-selective cyclooxygenase-2 inhibitors. ACS Med Chem Lett. 2020;11:1881-5. doi: 10.1021/acsmedchemlett.9b00555.
26. Yao P, Yao P, Ku X, Yang J. Harmine suppresses the malignant phenotypes and PI3K activity in breast cancer. Anticancer Drugs. 2023;34:373-83. doi: 10.1097/CAD.0000000000001462.
27. Rashidi M, Mahmoudian E, Mirzaei S, Mazloomi SN, Bazi A, Azadeh H, et al. Harmaline downregulates angiogenesis markers and suppresses the growth of 4T1 breast cancer cells in vivo and in vitro. Chem Biol Interact. 2022;365:110087. doi: 10.1016/j.cbi.2022.110087.
28. Yavari N, Emamian F, Yarani R, Reza Mohammadi-Motlagh H, Mansouri K, Mostafaie A. In vitro inhibition of angiogenesis by heat and low pH stable hydroalcoholic extract of Peganum harmala seeds via inhibition of cell proliferation and suppression of VEGF secretion. Pharm Biol. 2015;53:855-61. doi: 10.3109/13880209.2014.946057.
29. Hamsa T, Kuttan G. Harmine inhibits tumour specific neo-vessel formation by regulating VEGF, MMP, TIMP and pro-inflammatory mediators both in vivo and in vitro. Eur J Pharmacol. 2010;649:64-73. doi: 10.1016/j.ejphar.2010.09.010.
30. Zhang Y, Shi X, Xie X, Laster KV, Pang M, Liu K, et al. Harmaline isolated from Peganum harmala suppresses growth of esophageal squamous cell carcinoma through targeting mTOR. Phytother Res. 2021;35:6377-88. doi: 10.1002/ptr.7289.
31. Ruan S, Jia F, Li J. Potential antitumor effect of harmine in the treatment of thyroid cancer. Evid Based Complement Alternat Med. 2017;2017. doi: 10.1155/2017/9402615.
32. Javeed M, Rasul A, Hussain G, Jabeen F, Rasool B, Shafiq N, et al. Harmine and its derivatives: Biological activities and therapeutic potential in human diseases. Bangladesh J Pharmacol. 2018;13:203-13. doi: 10.3329/bjp.v13i3.34990.
33. Pfeffer CM, Singh AT. Apoptosis: a target for anticancer therapy. Int J Mol Sci. 2018;19:448. doi: 10.3390/ijms19020448.
34. Seyed Hassan Tehrani S, Hashemi Sheikh Shabani S, Tahmasebi Enferadi S, Rabiei Z. Growth inhibitory impact of Peganum harmala L. on two breast cancer cell lines. Iran J Biotechnol. 2014;12:8-14. doi:10.5812/IJB.18562.
35. Shabani SHS, Tehrani SSH, Rabiei Z, Enferadi ST, Vannozzi GP. Peganum harmala L.’s anti-growth effect on a breast cancer cell line. Biotechnol Rep. 2015;8:138-43. doi: 10.1016/j.btre.2015.08.007.
36. Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022;12:985363. doi: 10.3389/fonc.2022.985363.
37. Cory S, Adams JM. Killing cancer cells by flipping the Bcl-2/Bax switch. Cancer cell. 2005;8:5-6. doi: 10.1016/j.ccr.2005.06.012.
38. Liu Z, Ding Y, Ye N, Wild C, Chen H, Zhou J. Direct activation of Bax protein for cancer therapy. Med Res Rev. 2016;36:313-41. doi: 10.1002/med.21379.
39. Huang Hj, Yuan Xz. Recent progress in the direct liquefaction of typical biomass. Prog Energy Combust Sci. 2015;49:59-80. doi:10.1016/j.pecs.2015.01.003.
40. Salimizadeh Z, Enferadi ST, Majidizadeh T, Mahjoubi F. Cytotoxicity of alkaloids isolated from Peganum harmala seeds on HCT116 human colon cancer cells. Mol Biol Rep. 2024;51:732. doi: 10.1007/s11033-024-09655-7.
41. Rezaee M, Hajighasemi F. Sensitivity of hematopoietic malignant cells to Peganum harmala seed extract in vitro. J basic clin pathophysiol. 2019;7:21-6. doi: 10.22070/JBCP.2019.3982.1107.
42. Ma Y, Wink M. The beta‐carboline alkaloid harmine inhibits BCRP and can reverse resistance to the anticancer drugs mitoxantrone and camptothecin in breast cancer cells. Phytother Res. 2010;24:146-9. doi: 10.1002/ptr.2860.
43. Wu LW, Zhang JK, Rao M, Zhang ZY, Zhu HJ, Zhang C. Harmine suppresses the proliferation of pancreatic cancer cells and sensitizes pancreatic cancer to gemcitabine treatment. Onco Targets Ther. 2019:4585-93. doi: 10.2147/OTT.S205097.
44. Hayward RL, Macpherson JS, Cummings J, Monia BP, Smyth JF, Jodrell DI. Enhanced oxaliplatin-induced apoptosis following antisense Bcl-xl down-regulation is p53 and Bax dependent: Genetic evidence for specificity of the antisense effect. Mol Cancer Ther. 2004;3:169-78. doi: 10.1158/1535-7163.169.3.2.
45. Almendro V, Ametller E, García-Recio S, Collazo O, Casas I, Augé JM, et al. The role of MMP7 and its cross-talk with the FAS/FASL system during the acquisition of chemoresistance to oxaliplatin. PLoS One. 2009;4:e4728. doi: 10.1371/journal.pone.0004728.
46. Fan Y, Zeng F, Ma L, Zhang H. Effects of β-carboline alkaloids from Peganum harmala on the FAK/PI3K/AKT/Mtor pathway in human gastric cancer cell line SGC-7901 and tumor-bearing mice. Pak J Pharm Sci. 2021;34. doi : 10.36721/PJPS.2021.34.3.REG.891-898.1.
47. Hamsa TP, Kuttan G. Harmine activates intrinsic and extrinsic pathways of apoptosis in B16F-10 melanoma. Chin Med. 2011;6:1-8. doi: 10.1186/1749-8546-6-11.
48. Ding Y, He J, Huang J, Yu T, Shi X, Zhang T, et al. Harmine induces anticancer activity in breast cancer cells via targeting TAZ. Int J Oncol. 2019;54:1995-2004. doi: 10.3892/ijo.2019.4777.
49. Guo B, Cao S, Tóth K, Azrak RG, Rustum YM. Overexpression of Bax enhances antitumor activity of chemotherapeutic agents in human head and neck squamous cell carcinoma. Clin Cancer Res. 2000;6:718-24.
50. Zhao Y, Xiao B, Chen B, Qiao T, Fan D. Upregulation of drug sensitivity of multidrug-resistant SGC7901/VCR human gastric cancer cells by bax gene transduction. Chin Med J (Engl). 2000;113:977-80.
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salimizadeh Z, Tahmasebi Enferadi S, Majidizadeh T, Jalal R, Mahjoubi F. Investigating the cytotoxic effect of aqueous extract of Peganum harmala on oxaliplatin-resistant HCT116 cell line and evaluating BAX gene expression. J. Ilam Uni. Med. Sci. 2025; 33 (1) :111-126
URL: http://sjimu.medilam.ac.ir/article-1-8413-fa.html

سلیمی زاده زهرا، طهماسبی انفرادی ستار، مجیدی زاده طیبه، جلال راضیه، محجوبی فروزنده. بررسی اثر سیتوتوکسیک عصارۀ آبی گیاه اسپند بر ردۀ سلولی HCT116 مقاوم به اگزالی‌پلاتین و ارزیابی بیان ژن‌ BAX. مجله دانشگاه علوم پزشکی ایلام. 1404; 33 (1) :111-126

URL: http://sjimu.medilam.ac.ir/article-1-8413-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 33، شماره 1 - ( 1-1404 ) برگشت به فهرست نسخه ها
مجله دانشگاه علوم پزشکی ایلام Journal of Ilam University of Medical Sciences
Persian site map - English site map - Created in 0.17 seconds with 39 queries by YEKTAWEB 4701