1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021; 71:209-49 doi: 10.3322/caac.21660. 2. Fang X, Cao J, Shen A. Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol. 2020;57:101662. doi:10.1016/j.jddst.2020.101662. 3. Kim GJ, Nie S. Targeted cancer nanotherapy. Mater Today. 2005; 8:28-33. doi:10.1016/S1369-7021(05)71034-8. 4. Waris A, Din M, Ali A, Ali M, Afridi S, Baset A, et al. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg Chem Commun. 2021; 123:108369. doi:10.1016/j.inoche.2020.108369. 5. Verma N, Kumar N. Synthesis and biomedical applications of copper oxide nanoparticles: an expanding horizon. Verma N, Kumar N. Synthesis and biomedical applications of copper oxide nanoparticles: an expanding horizon. ACS Biomater Sci Eng. 2019; 5:1170-88. doi:10.1021/acsbiomaterials.8b01092. 6. Szymański P, Frączek T, Markowicz M, Mikiciuk-Olasik E. Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals. 2012; 25:1089-112. doi:10.1007/s10534-012-9578-y. 7. Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emerg Mater. 2022; 5:1593-615. doi:10.1007/s1001841722004867. 8. Rahnama A, Gharagozlou M. Preparation and properties of semiconductor CuO nanoparticles via a simple precipitation method at different reaction temperatures. Opt Quantum Electron. 2012; 44:313-22. doi:10.1007/s11082-011-9540-1. 9. Hosseinkhah M, Ghasemian R, Shokrollahi F, Mojdehi SR, Noveiri MJ, Hedayati M, et al. Cytotoxic potential of nickel oxide nanoparticles functionalized with glutamic acid and conjugated with thiosemicarbazide (NiO@ Glu/TSC) against human gastric cancer cells. J Clust Sci. 2022; 33:2045-53. doi:10.1007/s10876-021-02124-2. 10. Kumari R, Saini AK, Kumar A, Saini RV. Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. J Biol Inorg Chem. 2020; 25:23-37. doi: 10.1007/s00775-019-01729-3. 11. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001; 29:e45. doi: 10.1093/nar/29.9. e45. 12. Talarposhti MV, Salehzadeh A, Jalali A. Comparing the toxicity effects of copper oxide nanoparticles conjugated with Lapatinib on breast (MDA-MB-231) and lung (A549) cancer cell lines. Naunyn Schmiedebergs Arch Pharmacol. 2024: 397 :6855-6866. doi: 10.1007/s00210-024-03071-1. 13. Bouazizi N, Bargougui R, Oueslati A, Benslama R. Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv Mater Lett. 2015; 6:158-64. doi: 10.5185/amlett.2015.5656. 14. Varlashkin P. X-ray powder diffraction data of lapatinib ditosylate monohydrate. Powder Diffr. 2009; 24:250-3. doi:10.1154/1.3187152. 15. Yang Q, Wang YE, Yang Q, Gao Y, Duan X, Fu Q, et al. Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials. 2017; 146:72-85. doi:10.1016/j.biomaterials.2017.09.008. 16. Zughaibi TA, Mirza AA, Suhail M, Jabir NR, Zaidi SK, Wasi S, et al. Evaluation of anticancer potential of biogenic copper oxide nanoparticles (CuO NPs) against breast cancer. J Nanomater. 2022;2022:5326355. doi:10.1155/2022/5326355. 17. Shafiei I, Tavassoli SP, Rahmatollahi HR, Ghasemian R, Salehzadeh A. A novel copper oxide nanoparticle conjugated by thiosemicarbazone promote apoptosis in human breast cancer Cell line. J Clust Sci. 2022;33:2697-706. doi:10.1007/s10876-021-02187-1. 18. Segovia-Mendoza M, González-González ME, Barrera D, Díaz L, García-Becerra R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: preclinical and clinical evidence. Am J Cancer Res. 2015;5:2531. 19. Xuhong JC, Qi XW, Zhang Y, Jiang J. Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am J Cancer Res. 2019; 9:2103-19. 20. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016; 1863:2977-92. doi: 10.1016/j.bbamcr.2016.09.012. 21. Mandal R, Barrón JC, Kostova I, Becker S, Strebhardt K. Caspase-8: The double-edged sword. Biochim Biophys Acta Rev Cancer. 2020; 1873:188357. doi: 10.1016/j.bbcan.2020.188357. 22. Mahmood RI, Kadhim AA, Ibraheem S, Albukhaty S, Mohammed-Salih HS, Abbas RH, et al. Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Sci Rep. 2022; 12: 16165. doi:10.1038/s41598-022-20360-y. 23. Li YT, Qian XJ, Yu Y, Li ZH, Wu RY, Ji J, et al. EGFR tyrosine kinase inhibitors promote pro-caspase-8 dimerization that sensitizes cancer cells to DNA-damaging therapy. Oncotarget. 2015;6:17491. doi: 10.18632/oncotarget.3959. 24. Tajmehri H, Mousavi FS, heydarnezhad M, Golrokh FJ, Nezami PV, Khanpour P, et al. Evaluation of the cytotoxic effect of cobalt oxide nanoparticles functionalized by glucose and conjugated with lapatinib (Co3O4@ Glu-Lapatinib) on a lung cancer cell line and evaluation of the expression of CASP8, mTOR1, and MAPK1 genes. BioNanoScience. 2024;14:999-1010. doi:10.1007/s12668-024-01348-6.
|