1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71:209-49. doi:10.3322/caac.21660. 2. Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020;8:3747-71. doi:10.1039/C9TB02871D. 3. Gavas S, Quazi S, Karpiński TM. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res Lett 2021; 16:173. doi:10.1186/s11671-021-03628-6. 4. Hernández-Hernández AA, Aguirre-Álvarez G, Cariño-Cortés R, Mendoza-Huizar LH, Jiménez-Alvarado R. Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chem Pap 2020; 74:3809-24. doi:10.1007/s11696-020-01229-8 5. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today 2007; 2:22-32. doi:10.1016/S1748-0132(07)70084-1. 6. Khan MI, Mohammad A, Patil G, Naqvi SA, Chauhan LK, Ahmad I. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 2012; 33:1477-88. doi:10.1016/j.biomaterials.2011.10.080. 7. Ahamed M, Alhadlaq HA, Khan MM, Akhtar MJ. Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway. J Nanoparticle Res 2013; 15:1-1. doi:10.1007/s11051-012-1225-6. 8. Naghshineh A, Dadras A, Ghalandari B, Riazi GH, Modaresi SM, Afrasiabi A, et al. Safranal as a novel anti-tubulin binding agent with potential use in cancer therapy: An in vitro study. Chem Biol Interact 2015; 238:151-60. doi:10.1016/j.cbi.2015.06.023. 9. Al-Hrout AA, Chaiboonchoe A, Khraiwesh B, Murali C, Baig B, El-Awady R, et al. Safranal induces DNA double-strand breakage and ER-stress-mediated cell death in hepatocellular carcinoma cells. Sci Rep 2018; 8:16951. doi:10.1038/s41598-018-34855-0. 10. Shokrollahi F, Salehzadeh A, Kafilzadeh F, Zaefizadeh M. Cytotoxic effect of iron oxide nanoparticles functionalized with glucose and conjugated with Coumarin (Fe3O4@ Glu-Coumarin NPs) on liver cancer, HepG2, cell line. Inorg Chem Commun 2023; 157:111380. doi:10.1016/j.inoche.2023.111380. 11. Mikaeili Ghezeljeh S, Salehzadeh A, Ataei-e Jaliseh S. Iron oxide nanoparticles coated with Glucose and conjugated with Safranal (Fe3O4@ Glu-Safranal NPs) inducing apoptosis in liver cancer cell line (HepG2). BMC Chem 2024;18:33. doi:10.1186/s13065-024-01142-1. 12. Sadat Shandiz SA, Montazeri A, Abdolhosseini M, Hadad Shahrestani S, Hedayati M, Moradi-Shoeili Z, et al. Functionalization of Ag nanoparticles by glutamic acid and conjugation of Ag@ Glu by thiosemicarbazide enhances the apoptosis of human breast cancer MCF-7 cells. J Clust Sci 2018;29:1107-14. doi:10.1007/s10876-018-1424-0. 13. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 2001; 29:e45-. doi:10.1093/nar/29.9.e45. 14. Emami N, Farhadian M, Solaimany Nazar AR, Tangestaninejad S. Adsorption of cefixime and lamotrigine on HKUST-1/ZIF-8 nanocomposite: Isotherms, kinetics models and mechanism. Int J Environ Sci Technol 2023; 20:1645-72. doi:10.1007/s13762-022-04679-7. 15. Abbaszadegan S, Al-Marzouqi AH, Salem AA, Amin A. Physicochemical characterizations of safranal-β-cyclodextrin inclusion complexes prepared by supercritical carbon dioxide and conventional methods. J Pharm Biomed Anal 2015; 83:215-26. doi:10.1007/s10847-015-0555-2. 16. Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res 2006; 67:55-60. doi:10.1002/ddr.20067. 17. Huang G, Chen H, Dong Y, Luo X, Yu H, Moore Z, et al. Superparamagnetic iron oxide nanoparticles: amplifying ROS stress to improve anticancer drug efficacy. Theranostics 2013; 3:116. doi:10.7150/thno.5411. 18. Yusefi M, Shameli K, Su Yee O, Teow SY, Hedayatnasab Z, Jahangirian H, et al. Green synthesis of Fe3O4 nanoparticles stabilized by a Garcinia mangostana fruit peel extract for hyperthermia and anticancer activities. Int J Nanomedicine 2021: 2515-32. doi:10.2147/IJN.S284134. 19. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004; 5:897-907. doi:10.1038/nrm1496. 20. Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin 2005; 37:719-27. doi:10.1111/j.1745-7270.2005.00108.x. 21. Yuste VJ, Sánchez-López I, Solé C, Moubarak RS, Bayascas JR, Dolcet X, et al. The contribution of apoptosis-inducing factor, caspase-activated DNase, and inhibitor of caspase-activated DNase to the nuclear phenotype and DNA degradation during apoptosis. J Biol Chem 2005; 280:35670-83. doi:10.1074/jbc.M504015200. 22. Delalat R, Sadat Shandiz SA, Pakpour B. Antineoplastic effectiveness of silver nanoparticles synthesized from Onopordum acanthium L. extract (AgNPs-OAL) toward MDA-MB231 breast cancer cells. Mol Biol Rep 2022:1-8. doi:10.1007/s11033-021-06936-3. 23. Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene 2003; 22:9030-40. doi: 10.1038/sj.onc.1207116. 24. Bigdeli R, Shahnazari M, Panahnejad E, Cohan RA, Dashbolaghi A, Asgary V. Cytotoxic and apoptotic properties of silver chloride nanoparticles synthesized using Escherichia coli cell-free supernatant on human breast cancer MCF 7 cell line. Artif Cells Nanomed Biotechnol 2019;47:1603-9. doi:10.1080/21691401.2019.1604533. 25. Zarrinpour V, Mohammad Amoie A, Sadat Shandiz SA, Salehzadeh A. Effect of ZnFe2O4@ Ag Nanocomposite Biosynthesized by Chlorella vulgaris on the Expression of P53, Caspase 9, and CAD Genes in Breast Cancer Cell Line. Anim Biol J 2023;1:137-148.
|