1. Melo LC, Dativo-Medeiros J, Menezes-Silva CE, Barbosa FT, de Sousa-Rodrigues CF, Rabelo LA. Physical Exercise on Inflammatory Markers in Type 2 Diabetes Patients: A Systematic Review of Randomized Controlled Trials. Oxid Med Cell Longev 2017;2017:8523728. doi: 10.1155/2017/8523728. 2. Krug EG. Trends in diabetes: sounding the alarm. Lancet 2016;387:1485-86. doi: 10.1016/S0140-6736(16)30163-5. 3. Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y. From Pre-Diabetes to Diabetes: Diagnosis, Treatments and Translational Research. Medicina (Kaunas) 2019;55:546. doi: 10.3390/medicina55090546. 4. Cherrington AD, Edgerton D, Sindelar DK. The direct and indirect effects of insulin on hepatic glucose production in vivo. Diabetologi 1998;41:987-96. doi: 10.1007/s001250051021. 5. Schmitz O, Rungby J, Edge L, Juhl CB. On high-frequency insulin oscillations. Ageing Res Rev 2008;7:301-5. doi: 10.1016/j.arr.2008.04.002. 6. Mao CS, Berman N, Roberts K, Ipp E. Glucose entrainment of high-frequency plasma insulin oscillations in control and type 2 diabetic subjects. Diabetes 1999;48:714-21. doi: 10.2337/diabetes.48.4.714. 7. Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 2018;14:1483-96. doi: 10.7150/ijbs.27173. 8. Højlund K. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J 2014;61:B4890. 9. Orho-Melander M, Almgren P, Kanninen T, Forsblom C, Groop LC. A paired-sibling analysis of the XbaI polymorphism in the muscle glycogen synthase gene. Diabetologia 1999;42:1138-45. doi: 10.1007/s001250051282. 10. Kumar L, Chou J, Yee CS, Borzutzky A, Vollmann EH, von Andrian UH, et al. Leucine-rich repeat containing 8A (LRRC8A) is essential for T lymphocyte development and function. J Exp Med 2014;211:929-42. doi: 10.1084/jem.20131379. 11. Kumar A, Xie L, Ta CM, Hinton AO, Gunasekar SK, Minerath RA, et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. Elife 2020;9:e58941. doi: 10.7554/eLife.58941. 12. Gunasekar SK, Xie L, Kumar A, Hong J, Chheda PR, Kang C, et al. Small molecule SWELL1 complex induction improves glycemic control and nonalcoholic fatty liver disease in murine Type 2 diabetes. Nat Commun 2022;13:784. doi: 10.1038/s41467-022-28435-0. 13. Morvaridi M, Rayyani E, Jaafari M, Khiabani A, Rahimlou M. The effect of green coffee extract supplementation on cardio metabolic risk factors: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Metab Disord 2020;19:645-60. doi: 10.1007/s40200-020-00536-x. 14. Abdel Mohsen D, Akabawy A, Abdemoneim A, Amin HK. The possible effects of green coffee bean extract on progression of experimental diabetes in different organs; A review article. J Adv Pharm Res 2021;5:297-304. doi: 10.21608/APRH.2021.77827.1133. 15. Vats A. Pharmacological properties of Green coffee: a review. J Adv Pharm Technol Res 2022;11:2970-6. 16. Rojas-González A, Figueroa-Hernández CY, González-Rios O, Suárez-Quiroz ML, González-Amaro RM, Hernández-Estrada ZJ, et al. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022;27:3400. doi: 10.3390/molecules27113400. 17. Soviguidi DRJ, Pan R, Liu Y,Rao L, Zhang W, Yang X. Chlorogenic acid metabolism: the evolution and roles in plant response to abiotic stress. Phyton 2022;91:239. doi: 10.32604/phyton.2022.018284. 18. Kang C-W, Park M, Lee H-J. Mulberry (Morus alba L.) leaf extract and 1-Deoxynojirimycin improve skeletal muscle insulin resistance via the activation of IRS-1/PI3K/Akt pathway in db/db mice. Life 2022;12:1630. doi: 10.3390/life12101630. 19. Abdollahi M, Marandi SM, Ghaedi K, Safaeinejad Z, Kazeminasab F, Shirkhani S, et al. Insulin-Related Liver Pathways and the Therapeutic Effects of Aerobic Training, Green Coffee, and Chlorogenic Acid Supplementation in Prediabetic Mice. Oxid Med Cell Longev 2022;2022:5318245. doi: 10.1155/2022/5318245. 20. Choi BK, Park SB, Lee DR, Lee HJ, Jin YY, Yang SH, Suh JW. Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pac J Trop Med 2016;9:635-43. doi: 0.1016/j.apjtm.2016.05.017. 21. Li X, Wang G, Xu Y, Wang Y, Hao R, Ma X. Xiao Ke Qing improves glycometabolism and ameliorates insulin resistance by regulating the PI3K/Akt pathway in KKAy mice. Front Med 2018;12:688-96. doi: 10.1007/s11684-018-0662-8. 22. Grundy SM. Prediabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol 2012;59:635-43. doi: 10.1016/j.jacc.2011.08.080. 23. Preguiça I, Alves A, Nunes S, Fernandes R, Gomes P, Viana SD, et al. Diet-induced rodent models of obesity-related metabolic disorders-A guide to a translational perspective. Obes Rev 2020;21:e13081. doi: 10.1111/obr.13081. 24. Brouns F. Overweight and diabetes prevention: is a low-carbohydrate-high-fat diet recommendable?. Eur J Nutr 2018;57:1301-12. doi: 10.1007/s00394-018-1636-y. 25. Jensen J, Lai Y-C. Regulation of muscle glycogen synthase phosphorylation and kinetic properties by insulin, exercise, adrenaline and role in insulin resistance. Arch Physiol Biochem 2009;115:13-21. doi: 10.1080/13813450902778171. 26. Damsbo P, Vaag A, Hother-Nielsen O, Beck-Nielsen H. Reduced glycogen synthase activity in skeletal muscle from obese patients with and without type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1991;34:239-45. doi: 10.1007/BF00405082. 27. Johnson A, Webster J, Sum C-F, Heseltine L, Argyraki M, Cooper B, et al. The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type II diabetic patients. Metabolism 1993;42:1217-22. doi: 10.1016/0026-0495(93)90284-u. 28. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 1990;322:223-8. doi: 10.1056/NEJM199001253220403. 29. Kim Y-B, Nikoulina SE, Ciaraldi TP, Henry RR, Kahn BB. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest1999;104:733-41. doi: 10.1172/JCI6928. 30. Morino K, Petersen KF, Dufour S, Befroy D, Frattini J, Shatzkes N, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest 2005;115:3587-93. doi: 10.1172/JCI25151. 31. Kumar A, Xie L, Ta CM, Hinton AO, Gunasekar SK, Minerath RA, et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. Elife 2020;9:e58941. doi: 10.7554/eLife.58941. 32. Huang L, Fang Y, Tang L. Comparisons of different exercise interventions on glycemic control and insulin resistance in prediabetes: a network meta-analysis. BMC Endocr Disord 2021;21:181. doi: 10.1186/s12902-021-00846-y. 33. Al-Brakati A, Albarakati AJA, Daabo H, Baty RS, Salem FEH, Habotta OA, et al. Neuromodulatory effects of green coffee bean extract against brain damage in male albino rats with experimentally induced diabetes. Metab Brain Dis 2020;35:1175-87. doi: 10.1007/s11011-020-00583-6. 34. Pimpley V, Patil S, Srinivasan K, Desai N, Murthy PS. The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Prep Biochem Biotechnol 2020;50:969-978. doi: 10.1080/10826068.2020.1786699. 35. Beam JR, Gibson AL, Kerksick CM, Conn CA, White AC, Mermier CM. Effect of post-exercise caffeine and green coffee bean extract consumption on blood glucose and insulin concentrations. Nutrition 2015;31:292-7. doi: 10.1016/j.nut.2014.07.012. 36. Peng BJ, Qi Z, Zhong YL, Xu SH, Zheng W. Chlorogenic acid maintains glucose homeostasis through modulating the expression of SGLT-1, GLUT-2, and PLG in different intestinal segments of Sprague-Dawley rats fed a high-fat diet. Biomed Environ Sci 2015;28:894-903. doi: 10.3967/bes2015.123. 37. Chen L, Teng H, Cao H. Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Food Chem Toxicol 2019;127:182-87. doi: 10.1016/j.fct.2019.03.038. 38. Ramos LV, da Costa THM, Arruda SF. The effect of coffee consumption on glucose homeostasis and redox-inflammatory responses in high-fat diet-induced obese rats. J Nutr Biochem 2022;100:108881. doi: 10.1016/j.jnutbio.2021.108881. 39. Zamani‐Garmsiri F, Ghasempour G, Aliabadi M, Hashemnia SMR, Emamgholipour S, Meshkani R. Combination of metformin and chlorogenic acid attenuates hepatic steatosis and inflammation in high‐fat diet fed mice. IUBMB life 2021;73:252-63. doi: 10.1002/iub.2424.
|