1. Ständer S, Simpson EL, Guttman-Yassky E, Thyssen JP, Kabashima K, Ball SG, et al. Clinical Relevance of Skin Pain in Atopic Dermatitis. J Drugs Dermatol 2020; 19:921-6. doi: 10.36849/JDD.2020.5498. 2. Na CH, Chung J, Simpson EL. Quality of Life and Disease Impact of Atopic Dermatitis and Psoriasis on Children and Their Families. Children (Basel) 2019; 6:133. doi: 10.3390/children6120133. 3. Mulick AR, Allen V, Williams HC, Grindlay DJC, Pearce N, Abuabara K, et al. Classifying atopic dermatitis: protocol for a systematic review of subtypes (phenotypes) and associated characteristics. BMJ Open 2018; 8: e023097. doi: 10.1136/bmjopen-2018-023097. 4. Yalcin AD. An overview of the effects of anti-IgE therapies. Med Sci Monit 2014; 20:1691-9. doi: 10.12659/MSM.890137. 5. Brown SJ, McLean WH. Eczema genetics: current state of knowledge and future goals. J Invest Dermatol 2009; 129:543-52. doi: 10.1038/jid.2008.413. 6. Bajgai J, Fadriquela A, Ara J, Begum R, Ahmed MF, Kim CS, et al. Balneotherapeutic effects of high mineral spring water on the atopic dermatitis-like inflammation in hairless mice via immunomodulation and redox balance. BMC Complement Altern Med 2017;17:481. doi: 10.1186/s12906-017-1985-8. 7. da Costa Gonçalves F, Grings M, Nunes NS, Pinto FO, Garcez TN, Visioli F, et al. Antioxidant properties of mesenchymal stem cells against oxidative stress in a murine model of colitis. Biotechnol Lett 2017; 39:613-22. doi: 10.1007/s10529-016-2272-3. 8. Li K, Yan G, Huang H, Zheng M, Ma K, Cui X, et al. Anti-inflammatory and immunomodulatory effects of the extracellular vesicles derived from human umbilical cord mesenchymal stem cells on osteoarthritis via M2 macrophages. J Nanobio-technology 2022; 20:38. doi: 10.1186/s12951-021-01236-1. 9. Kay AG, Long G, Tyler G, Stefan A, Broadfoot SJ, Piccinini AM, et al. Mesenchymal Stem Cell-Conditioned Medium Reduces Disease Severity and Immune Responses in Inflammatory Arthritis. Sci Rep 2017; 7:18019. doi: 10.1038/s41598-017-18144-w. 10. Zhang EY, Chen AY, Zhu BT. Mechanism of dinitrochlorobenzene-induced dermatitis in mice: role of specific antibodies in pathogenesis. PLoS One 2009;4: e7703. doi: 10.1371/journal.pone.0007703. 11. Duo L, Hu L, Tian N, Cheng G, Wang H, Lin Z, et al. TRPV1 gain-of-function mutation impairs pain and itch sensations in mice. Mol Pain 2018; 14:1744806918762031. doi: 10.1177/1744806918762031. 12. Jang HY, Koo JH, Lee SM, Park BH. Atopic dermatitis-like skin lesions are suppressed in fat-1 transgenic mice through the inhibition of inflammasomes. Exp Mol Med 2018; 50:1-9. doi: 10.1038/s12276-018-0104-3. 13. Filip A, Daicoviciu D, Clichici S, Bolfa P, Catoi C, Baldea I, et al. The effects of grape seeds polyphenols on SKH-1 mice skin irradiated with multiple doses of UV-B. J Photochem Photobiol B 2011; 105:133-42. doi: 10.1016/j.jphotobiol.2011.08.002. 14. Conti M, Morand PC, Levillain P, Lemonnier A. Improved fluorometric determination of malonal-dehyde. Clin Chem 1991; 37:1273-5. 15. McLeod JJ, Baker B, Ryan JJ. Mast cell production and response to IL-4 and IL-13. Cytokine 2015; 75:57-61. doi: 10.1016/j.cyto.2015.05.019. 16. Han M, Wang X, Wang J, Lang D, Xia X, Jia Y, et al. Ameliorative effects of epigallocatechin-3-gallate nanoparticles on 2,4-dinitrochlorobenzene induced atopic dermatitis: A potential mechanism of inflammation-related necroptosis. Front Nutr 2022; 9:953646. doi: 10.3389/fnut.2022.953646. 17. Martin SF, Esser PR, Weber FC, Jakob T, Freudenberg MA, Schmidt M, et al. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy 2011; 66:1152-63. doi: 10.1111/j.1398-9995.2011.02652. x. 18. Chiricozzi A, Maurelli M, Peris K, Girolomoni G. Targeting IL-4 for the Treatment of Atopic Dermatitis. Immunotargets Ther 2020; 9:151-156. doi: 10.2147/ITT.S260370. 19. Xian D, Guo M, Xu J, Yang Y, Zhao Y, Zhong J. Current evidence to support the therapeutic potential of flavonoids in oxidative stress-related dermatoses. Redox Rep 2021; 26:134- 46. doi: 10.1080/13510002.2021.1962094. 20. Wang S, Qu X, Zhao RC. Clinical applications of mesenchymal stem cells. J Hematol Oncol 2012; 5:19. doi: 10.1186/1756-8722-5-19. 21. Takahashi H, Ohnishi S, Yamamoto Y, Hayashi T, Murao N, Osawa M, et al. Topical Application of Conditioned Medium from Hypoxically Cultured Amnion-Derived Mesenchymal Stem Cells Promotes Wound Healing in Diabetic Mice. Plast Reconstr Surg 2021; 147:1342-52. doi: 10.1097/PRS.0000000000007993. 22. Horn AP, Bernardi A, Luiz Frozza R, Grudzinski PB, Hoppe JB, de Souza LF, et al. Mesenchymal stem cell-conditioned medium triggers neuroin-flammation and reactive species generation in organotypic cultures of rat hippocampus. Stem Cells Dev 2011; 20:1171-81. doi: 10.1089/scd.2010.0157. 23. Bloom DD, Centanni JM, Bhatia N, Emler CA, Drier D, Leverson GE, et al. A reproducible immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression. Cyto-therapy 2015; 17:140-51. doi: 10.1016/j.jcyt.2014.10.002. 24. Seetharaman R, Mahmood A, Kshatriya P, Patel D, Srivastava A. Mesenchymal Stem Cell Conditioned Media Ameliorate Psoriasis Vulgaris: A Case Study. Case Rep Dermatol Med 2019; 2019:8309103. doi: 10.1155/2019/8309103. 25. Trallori E, Ghelardini C, Di Cesare Mannelli L. Mesenchymal stem cells, implications for pain therapy. Neural Regen Res 2019; 14:1915-16. doi: 10.4103/1673-5374.259615.
|