|
1. Khazaei Z, Goodarzi E, Borhaninejad V, Iranmanesh F, Mirshekarpour H, Mirzaei B, et al. The association between incidence and mortality of brain cancer and human development index (HDI): an ecological study. BMC Public Health. 2020;20:1696. doi:10.1186/s12889-020-09838-4. 2. Wild CP, Stewart BW, editors. World cancer report 2014. Geneva, Switzerland: World Health Organization; 2014. 3. Ranjbarzadeh R, Caputo A, Tirkolaee EB, Ghoushchi SJ, Bendechache M. Brain tumor segmentation of MRI images: A comprehensive review on the application of artificial intelligence tools. Comput Biol Med. 2023; 152:106405. doi: 10.1016/j.compbiomed.2022.106405. 4. Jiao C, Yang T. An overview of multimodal brain tumor MR image segmentation methods. In: Third International Conference on Artificial Intelligence, Automation, and High-Performance Computing (AIAHPC 2023); 2023; 12717. Bellingham, WA: SPIE; 2023. p. 725–33. doi:10.1117/12.2685325. 5. Anantharajan S, Gunasekaran S, Subramanian T. MRI brain tumor detection using deep learning and machine learning approaches. Meas Sens. 2024; 31:101026. doi: 10.1016/j.measen.2024.101026. 6. Ilhan U, Ilhan A. Brain tumor segmentation based on a new threshold approach. Procedia Comput Sci. 2017; 120:580-7. doi: 10.1016/j.procs.2017.11.282. 7. Jardim S, António J, Mora C. Image thresholding approaches for medical image segmentation—short literature review. Procedia Comput Sci. 2023; 219:1485-92. doi: 10.1016/j.procs.2023.01.439 8. Kashyap R, Gautam P. Modified region-based segmentation of medical images. In: 2015 International Conference on Communication Networks (ICCN); 2015 Nov 19; Gwalior, India. Piscataway, NJ: IEEE; 2015. p. 209-16. doi:10.1109/ICCN.2015.41. 9. Liu HX, Fang JX, Zhang ZJ, Lin YC. Localised edge‐region‐based active contour for medical image segmentation. IET Image Process. 2021;15:1567-82. doi:10.1049/ipr2.12126. 10. Abidin ZU, Naqvi RA, Haider A, Kim HS, Jeong D, Lee SW. Recent deep learning-based brain tumor segmentation models using multi-modality magnetic resonance imaging: A prospective survey. Front Bioeng Biotechnol. 2024; 12:1392807. doi:10.3389/fbioe.2024.1392807. 11. Swathi VN, Sinduja K, Kumar VR, Mahendar A, Prasad GV, Samya B. Deep learning-based brain tumor detection: An MRI segmentation approach. MATEC Web Conf. 2024; 392:01157. doi:10.1051/matecconf/202439201157. 12. Shrestha A, Mahmood A. Review of deep learning algorithms and architectures. IEEE Access. 2019; 7:53040-65. doi:10.1109/ACCESS.2019.2912200. 13. Shinde PP, Shah S. A review of machine learning and deep learning applications. In: 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA); 2018 Aug 16; Pune, India. Piscataway, NJ: IEEE; 2018. p. 1–6. doi:10.1109/ICCUBEA.2018.8697857. 14. Ganaie MA, Hu M, Malik AK, Tanveer M, Suganthan PN. Ensemble deep learning: A review. Eng Appl Artif Intell. 2022; 115:105151. doi: 10.1016/j.engappai.2022.105151. 15. Samee NA, Ahmad T, Mahmoud NF, Atteia G, Abdallah HA, Rizwan A. Clinical decision support framework for segmentation and classification of brain tumor MRIs using a U-Net and DCNN cascaded learning algorithm. Healthcare. 2022;10:2340. doi:10.3390/healthcare10122340. 16. Kamnitsas K, Ferrante E, Parisot S, Ledig C, Nori AV, Criminisi A, et al. DeepMedic for brain tumor segmentation. In: International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 2016 Oct 16; Athens, Greece. Cham: Springer International Publishing; 2017. p. 138–49. doi:10.1007/978-3-319-55524-9_14. 17. Rehman MU, Cho S, Kim JH, Chong KT. Bu-net: Brain tumor segmentation using modified u-net architecture. Electronics. 2020;9:2203. doi:10.3390/electronics9122203. 18. Chen S, Ding C, Liu M. Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recognit. 2019; 88:90-100. doi: 10.1016/j.patcog.2018.11.009. 19. Kermi A, Mahmoudi I, Khadir MT. Deep convolutional neural networks using U-Net for automatic brain tumor segmentation in multimodal MRI volumes. In: International MICCAI Brainlesion Workshop; 2018 Sep 16; Granada, Spain. Cham: Springer International Publishing; 2019. p. 37-48. doi:10.1007/978-3-030-11726-9_4. 20. Türkmen Y. Brain lesion segmentation using deep learning [Master’s thesis]. Ankara: Ankara Üniversitesi; 2023. 21. Raza R, Bajwa UI, Mehmood Y, Anwar MW, Jamal MH. dResU-Net: 3D deep residual U-Net based brain tumor segmentation from multimodal MRI. Biomed Signal Process Control. 2023; 79:103861. doi: 10.1016/j.bspc.2022.103861. 22. Aboussaleh I, Riffi J, El Fazazy K, Mahraz AM, Tairi H. 3DUV-NetR+: A 3D hybrid semantic architecture using transformers for brain tumor segmentation with MultiModal MR images. Results Eng. 2024; 21:101892. doi: 10.1016/j.rineng.2024.101892. 23. Kharaji M, Abbasi H, Orouskhani Y, Shomalzadeh M, Kazemi F, Orouskhani M. Brain tumor segmentation with advanced nnU-Net: pediatrics and adults tumors. Neurosci Inform. 2024;4:100156. doi: 10.1016/j.neuri.2024.100156. 24. Bonato B. From BraTS Challenges to an Extended Glioma Dataset: State-of-the-Art BrainSegFounder Model Optimization and a Decade of Insights into Multi-Class Glioma Tumor Segmentation. 25. Hashmi S, Lugo J, Elsayed A, Saggurthi D, Elseiagy M, Nurkamal A, et al. Optimizing brain tumor segmentation with MedNeXt: BraTS 2024 SSA and pediatrics. arXiv [preprint]. 2024. arXiv:2411.15872. doi:10.48550/arXiv.2411.15872. 26. Vossough A, Khalili N, Familiar AM, Gandhi D, Viswanathan K, Tu W, et al. Training and comparison of nnU-Net and DeepMedic methods for autosegmentation of pediatric brain tumors. AJNR Am J Neuroradiol. 2024;45:1081-9. doi:10.3174/ajnr.A8293. 27. Kazerooni AF, Khalili N, Liu X, Haldar D, Jiang Z, Zapaishchykova A, et al. BraTS-PEDs: Results of the multi-consortium international pediatric brain tumor segmentation challenge 2023. arXiv [preprint]. 2024. arXiv:2407.08855. doi:10.48550/arXiv.2407.08855. 28. Asiri AA, Shaf A, Ali T, Aamir M, Irfan M, Alqahtani S, et al. Brain tumor detection and classification using fine-tuned CNN with ResNet50 and U-Net model: A study on TCGA-LGG and TCIA dataset for MRI applications. Life. 2023;13:1449. doi:10.3390/life13071449. 29. Aish MA, Iqbal A, Ahmad J, Nasim F. Brain MRI Classification and Segmentation on TCGA-LGG and TCIA Dataset. JICET. 2025; 5: 1-16. 30. Shomirov A, Zhang J, Billah MM. Brain tumor segmentation of HGG and LGG MRI images using WFL-based 3D U-net. J Biomed Sci Eng. 2022;15:241-60. 31. Mutasa S, Sun S, Ha R. Understanding artificial intelligence-based radiology studies: CNN architecture. Clin Imaging. 2021; 80:72–6. doi: 10.1016/j.clinimag.2021.06.033. 32. Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK. Medical image analysis using convolutional neural networks: a review. J Med Syst. 2018;42:226. doi:10.1007/s10916-018-1088-1. 33. Kumar A. Study and analysis of different segmentation methods for brain tumor MRI application. Multimed Tools Appl. 2023;82:7117-39. doi:10.1007/s11042-022-13636-y. 34. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI); 2015; Munich, Germany. Cham: Springer International Publishing; 2015. p. 234-41. doi:10.1007/978-3-319-24574-4_28. 35. Isensee F, Jäger PF, Full PM, Vollmuth P, Maier-Hein KH. nnU-Net for brain tumor segmentation. In: International MICCAI Brainlesion Workshop; 2020 Oct 4; Lima, Peru. Cham: Springer International Publishing; 2021. p. 118-32. doi:10.1007/978-3-030-72087-2_11. 36. Huang L, Miron A, Hone K, Li Y. Segmenting medical images: from UNet to res-UNet and nnUNet. In: 2024 IEEE 37th International Symposium on Computer-Based Medical Systems. IEEE. 2024; 483-9. doi:10.1109/CBMS61543.2024.00086. 37. Jyothi CK, Awati A, Torse D. Optimizing Brain Tumor Segmentation in MRI images with Enhanced nnU-Net. In: 2024 Second International Conference on Networks, Multimedia and Information Technology (NMITCON); 2024 Aug 9; Belgaum, India. Piscataway, NJ: IEEE; 2024. p. 1-6. doi:10.1109/NMITCON62075.2024.10698771. 38. Guan X, Yang G, Ye J, Yang W, Xu X, Jiang W, et al. 3D AGSE-VNet: an automatic brain tumor MRI data segmentation framework. BMC Med Imaging. 2022;22:6. doi:10.1186/s12880-021-00728-8. 39. Chen W, Liu B, Peng S, Sun J, Qiao X. S3D-UNet: separable 3D U-Net for brain tumor segmentation. In: International MICCAI Brainlesion Workshop; 2018 Sep 16; Granada, Spain. Cham: Springer International Publishing; 2019. p. 358-68. doi:10.1007/978-3-030-11726-9_32. 40. Hua R, Huo Q, Gao Y, Sun Y, Shi F. Multimodal brain tumor segmentation using cascaded V-Nets. In: International MICCAI Brainlesion Workshop; 2018 Sep 16; Granada, Spain. Cham: Springer International Publishing; 2019. p. 49-60. doi:10.1007/978-3-030-11726-9_5. 41. Hua R, Huo Q, Gao Y, Sui H, Zhang B, Sun Y, et al. Segmenting brain tumor using cascaded V-Nets in multimodal MR images. Front Comput Neurosci. 2020; 14:9. doi:10.3389/fncom.2020.00009. 42. Chandra S, Vakalopoulou M, Fidon L, Battistella E, Estienne T, Sun R, et al. Context aware 3D CNNs for brain tumor segmentation. In: International MICCAI Brainlesion Workshop; 2018 Sep 16; Granada, Spain. Cham: Springer International Publishing; 2019. p. 299–310. doi:10.1007/978-3-030-11726-9_27. 43. Rahmat R, Saednia K, Khani MR, Rahmati M, Jena R, Price SJ. Multi-scale segmentation in GBM treatment using diffusion tensor imaging. Comput Biol Med. 2020; 123:103815. doi: 10.1016/j.compbiomed.2020.103815. 44. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017; 36:61–78. doi: 10.1016/j.media.2016.10.004. 45. Saeed T, Khan MA, Hamza A, Shabaz M, Khan WZ, Alhayan F, et al. Neuro-XAI: Explainable deep learning framework based on DeeplabV3+ and Bayesian optimization for segmentation and classification of brain tumor in MRI scans. J Neurosci Methods. 2024; 410:110247. doi: 10.1016/j.jneumeth.2024.110247. 46. Berghout T. The neural frontier of future medical imaging: a review of deep learning for brain tumor detection. J Imaging. 2024;11:2. doi:10.3390/jimaging11010002. 47. Ahuja S, Panigrahi BK, Gandhi TK. Fully automatic brain tumor segmentation using DeepLabv3+ with variable loss functions. In: 2021 8th International Conference on Signal Processing and Integrated Networks (SPIN); 2021 Aug 26; Noida, India. Piscataway, NJ: IEEE; 2021. p. 522–6. doi:10.1109/SPIN52536.2021.9566128. 48. Saifullah S, Dreżewski R, Yudhana A. Advanced brain tumor segmentation using DeepLabV3Plus with Xception encoder on a multi-class MR image dataset. Multimed Tools Appl. 2025:1-22. doi:10.1007/s11042-025-20702-8. 49. Piboonthummasak T, Yamcharoen N, Nobnop N, Charoenpong T. A Method for Brain Tumor Segmentation Using DeeplabV3+: Learning Rate Optimization. In: 2024 16th Biomedical Engineering International Conference (BMEiCON); 2024 Nov 21; Bangkok, Thailand. Piscataway, NJ: IEEE; 2024. p. 1–4. doi:10.1109/BMEiCON64021.2024.10896264. 50. Akagic A, Kapo M, Kandić E, Bećirović M, Kadrić N. Brain Tumor Segmentation of MRI Images with U-Net and DeepLabV3+. In: 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI); 2024 Apr 13; Dhaka, Bangladesh. Piscataway, NJ: IEEE; 2024. p. 1–6. doi:10.1109/ICMI60790.2024.10585749.
|