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Introduction:  Brain tumors are caused by abnormal cell proliferation and can lead to
neurological disorders by affecting the structure and function of the brain. Therefore, their
accurate and timely diagnosis plays a significant role in reducing clinical risks for patients.
Magnetic resonance imaging, as a non-invasive and highly accurate method, is widely used in
identifying tumor areas in the diagnosis and treatment planning process.

Materials & Methods: This study is a qualitative systematic review based on the PRISMA
guideline, which was conducted by comprehensively searching the Web of Science, Google
Scholar, Springer, Scopus, IEEE Xplore, and Elsevier scientific databases. Studies related to
convolutional neural networks (CNN) for brain tumor segmentation in Magnetic Resonance
Imaging (MRI) images, focusing on advanced architectures including U-Net, nnU-Net, V-Net,
DeepMedic, and DeepLabV3+, were selected based on specific inclusion and exclusion
criteria and subjected to qualitative and comparative analysis.

Results: The results of the reviewed articles showed that the DeepLabV3+ model had the
highest accuracy with an average Dice score of 0.917 and the other models U-Net, nnU-Net,
V-Net, and DeepMedic had average Dice scores of 0.827, 0.793, 0.819, and 0.752,
respectively. All of these models performed better than manual or traditional methods in
different data conditions such as 2D, 3D, and unbalanced data. However, the reported
performance for each model is affected by several factors, including the quality and volume
of training data, data augmentation strategies, the loss function used, and post-processing
steps.

Conclusion: This study shows that novel image analysis methods significantly improve the
accuracy of diagnostic assistance systems in brain imaging by automatically extracting
diagnostic features. However, the performance of the models is the result of a combination of
the main architecture and complementary techniques, and their evaluation should be
performed within the overall framework of the analysis pipeline (from preprocessing to post-
processing). Developing models with high generalizability in diverse data conditions is the
main path of progress in this field. Given the time-consuming and complex nature of manual
interpretation of MRI images, deep learning-based systems can help reduce human errors and
facilitate clinical decision-making. Consequently, optimization and development of these
models is an important step towards improving the diagnosis and management of patients with
brain tumors.
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Introduction

glioblastoma, meningioma, or low-grade
glioma), the malignancy grade (according to

Brain tumours arise from unregulated
cellular proliferation and can significantly
compromise the structural and functional
integrity of the central nervous system (1).
Depending on the histological type (e.g.,

WHO classification), and the anatomical site
(e.g., frontal or temporal lobes), these lesions
exhibit  diverse clinical manifestations,
including refractory headaches, seizures, motor
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dysfunction, cognitive decline, and, in advanced
stages, premature mortality (2). The World
Health Organisation (WHO) says that brain
tumours are the second most common cause of
cancer deaths around the world (1). For
effective  therapeutic  planning  (surgery,
radiotherapy,  chemotherapy),  prognostic
assessment, and patient survival optimisation
(2), it is very important to make an accurate and
timely diagnosis, especially by accurately
dividing the tumour into subregions (enhancing
tumour, tumour core, and peritumoral edoema).
Magnetic Resonance Imaging (MRI) is the best
non-invasive way to check for brain tumours. It
uses multimodal sequences (T1, Tlc, T2,
FLAIR) to give high spatial resolution and
tissue contrast (3). T1lc with contrast agent
shows tumour parts that are getting bigger,
while T2 and FLAIR show edoema and
infiltration that aren't getting bigger
(3).Nevertheless, manual MRI interpretation is
labor intensive, subjective, and susceptible to
inter observer variability, especially in cases of
ill defined margins, low contrast, or tumor tissue
overlap (4). Conventional segmentation
methods including thresholding, edge based,
and region growing techniques fail under
conditions of noise, extreme class imbalance,
and morphological complexity (4). In contrast,
convolutional neural networks (CNNSs) enable
robust, hierarchical feature extraction from
edges and textures to complex anatomical
patterns significantly improving segmentation
accuracy (5). The aim of this study was to
systematically review and compare the
performance of advanced CNN architectures in
brain tumor segmentation on MRI.

Methods

This qualitative systematic review was
conducted in accordance with the PRISMA
guidelines. The study population consisted of
articles published between 2015 and 2023 that
employed convolutional neural networks
(CNNs) specifically U-Net, nnU-Net, V-Net,
DeepMedic, and DeepLabV3+for brain tumor
segmentation in MRI. A comprehensive search
was performed in across six scientific databases:
Web of Science, Google Scholar, Springer,
Scopus, IEEE Xplore, and Elsevier. Studies
were included if they: (1) used high-quality
MRI data, preferably from standard public
datasets (BraTS, BraTS-GLI, BraTS-PEDs,
TCIA, LGG); (2) reported quantitative
performance metrics (Dice score, Accuracy,

Sensitivity); and (3) focused on advanced deep
learning architectures. Articles limited to tumor
detection (without segmentation), conventional
methods, or lacking sufficient metrics were
excluded. Data extraction covered architecture
type, dataset specifications, segmented regions,
and methodological enhancements (e.g., loss
functions, augmentation, post-processing).

Results

Systematic analysis revealed that the
performance of the five architectures is highly
dependent on evaluation protocols, data
characteristics, and methodological
configurations.  Nevertheless,  aggregated
metrics from BraTsS challenges enabled relative
comparison.

DeepLabV3+ had the highest mean Dice
score (0.917), which shows that it was better at
defining tumour boundaries. This was mostly
because of the atrous (dilated) convolutions and
the Atrous Spatial Pyramid Pooling (ASPP)
module, which extracts features at different
scales. This design gathers information about
the context across different receptive fields,
which is very important for irregular tumour
margins. But its sensitivity (0.794) was lower
than that of other models, probably because it
was sensitive to noise or needed a lot of tuning
of hyperparameters. U-Net demonstrated
balanced performance (Dice: 0.827; Accuracy:
0.935; Sensitivity: 0.873). Skip connections
helped keep spatial detail and make it easier to
separate irregular tumour boundaries by
combining high-resolution encoder features
with upsampled decoder outputs. 3D U-Net and
BU-Net are examples of advanced variants that
improved performance on volumetric and
imbalanced data by adding residual blocks or
attention modules. For example, BU-Net adds
custom RES and WC blocks as well as a custom
loss function to make receptive fields bigger and
make it easier to extract structural-textural
features.

nnU-Net had a very high accuracy of
0.994, but a lower sensitivity of 0.767 and a
moderate Dice of 0.793. This means that it was
hard to fully capture diffuse or low-contrast
tumour areas. lts self-configuring capability
automatically adapting network topology,
normalization strategy (instance normalization),
and post-processing based on dataset statistics
makes it suitable for multi center applications.
Deep supervision further stabilizes training in
sparse tumor scenarios. V-Net (mean Dice:
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0.819) effectively processed 3D data and
preserved inter slice contextual information
through 3D convolutions and residual
connections, enabling more accurate volumetric
segmentation than slice by slice approaches. By
modeling spatial dependencies across all three
dimensions, V-Net reduces false discontinuities
in tumor boundaries across adjacent slices a
common pitfall in 2D segmentation pipelines.

In contrast, DeepMedic showed the lowest
performance (Dice: 0.752). Although its dual-
path design processing high and low resolution
inputs in parallel aims to detect both focal and
diffuse lesions simultaneously, its high
computational complexity and sensitivity to
noise have limited its practical utility. Critically,
final performance was not solely determined by
core architecture but resulted from complex
interactions with pipeline components. Factors
such as loss function design (e.g., hybrid Dice
Cross Entropy to mitigate class imbalance), data
augmentation (elastic deformations mimicking
anatomical variability), and post processing
(removal of small disconnected components)
exerted direct and sometimes decisive influence
on outcomes. For example, nnU-Net’s
automated post-processing significantly boosts
Dice in sparse tumor scenarios.

Conclusion

This study demonstrates that deep
learning—based image analysis methods
significantly enhance the accuracy of computer-
aided systems for brain tumor segmentation in
MRI through automated, hierarchical feature
extraction. However, reported performance
reflects the integrated pipeline not just the
backbone architecture. Therefore, fair model
evaluation requires holistic assessment of all
components, from pre-processing to post-
processing.

Because interpreting MRIs by hand takes
a lot of time and is prone to mistakes, CNN-
based models can be useful decision-support
tools that help radiologists make decisions more
quickly, improve the consistency of diagnoses,
and make clinical workflow easier without
replacing expert judgement. The architecture
you choose should fit the clinical situation:
DeepLabV3+ for tasks that need to be sensitive
to boundaries, U-Net for tasks that need to work
well with limited resources, nnU-Net for
heterogeneous multi-institutional data, and V-
Net for full 3D volumetric analysis. DeepMedic
is an interesting idea, but it isn't very useful

because it isn't stable.

For translation into routine clinical
practice in the future, we need models that work
well with a wide range of data types (like
paediatric cases, rare tumours, and low-quality
scans) and standardised ways to evaluate them.
Combining clinical and genetic data with
imaging could make biologically informed
segmentation even easier. Improving these
methods will not only make diagnoses more
accurate, but it will also help with personalised
treatment planning and better care of brain
tumour patients.
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