1. Abdi S, Dorranian D, Razavi AE, Naderi GA, Boshtam M, Ghorannevis M. Evaluation of the effects of weak and moderate static magnetic fields on the characteristics of human low density lipoprotein in vitro. Bioelectromagnetics. 2013;34:397-404. doi:10.1002/bem.21779. 2. Aalami Zavareh F, Abdi S, Entezari M. Up-regulation of miR-144 and miR-375 in the human gastric cancer cell line following the exposure to extremely low-frequency electromagnetic fields. Int J Radiat Biol. 2021;97:1324-32. doi:10.1080/09553002.2021.1941376. 3. Mansoury F, Babaei N, Abdi S, Entezari M, Doosti A. Changes in NOTCH1 gene and its regulatory circRNA, hsa_circ_0005986 expression pattern in human gastric adenocarcinoma and human normal fibroblast cell line following the exposure to extremely low frequency magnetic field. Electromagn Biol Med. 2021;40:375-83.doi: 10.1080/15368378.2021.1891092. 4. Mattsson MO, Simkó M. Is there a relation between extremely low frequency magnetic field exposure, inflammation and neurodegenerative diseases? A review of in vivo and in vitro experimental evidence. Toxicology. 2012;301:1-12. doi: 10.1016/j.tox.2012.06.011. 5. Barbault A, Costa FP, Bottger B, Munden RF, Bomholt F, Kuster N, et al. Amplitude-modulated electromagnetic fields for the treatment of cancer: discovery of tumor-specific frequencies and assessment of a novel therapeutic approach. J Exp Clin Cancer Res. 2009;28:1-10. doi:10.1186/1756-9966-28-51. 6. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6:590-610.doi: 10.1016/j.molonc.2012.09.006. 7. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359-E86.doi: 10.1002/ijc.29210. 8. Li Q, Li Z, Wei S, Wang W, Chen Z, Zhang L, et al. Overexpression of miR-584-5p inhibits proliferation and induces apoptosis by targeting WW domain-containing E3 ubiquitin protein ligase 1 in gastric cancer. J Exp Clin Cancer Res. 2017;36:1-17.doi: 10.1186/s13046-017-0532-2. 9. Guo T, Zheng C, Wang Z, Zheng X. miR‑584‑5p regulates migration and invasion in non‑small cell lung cancer cell lines through regulation of MMP‑14. Mol Med Rep. 2019;19:1747-52.doi: 10.3892/mmr.2019.9813. 10. Abdi S, Dorranian D, Naderi GA, Razavi AE. Changes in physicochemical charachteristics of human low density lipoprotein nano-particles by electromagnetic field exposure. Stud U Babes-Bol Che. 2016;61:185-97. 11. Ma D, Qin Y, Huang C, Chen Y, Han Z, Zhou X, et al. Circular RNA ABCB10 promotes non-small cell lung cancer progression by increasing E2F5 expression through sponging miR-584-5p. Cell Cycle. 2020;19:1611-20.doi: 10.1080/15384101.2020.1761617. 12. Wei H, Wang J, Xu Z, Lu Y, Wu X, Zhuo C, et al. miR‐584‐5p regulates hepatocellular carcinoma cell migration and invasion through targeting KCNE2. Mol Genet Genomic Med. 2019;7:e702.doi: 10.1002/mgg3.702. 13. Xiang X, Mei H, Qu H, Zhao X, Li D, Song H, et al. miRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim Biophys Acta. 2015;1852:1743-54.doi: 10.1016/j.bbadis.2015.06.002. 14. Chen G, Hu M, Qu X, Wang K, Qu Y. MicroRNA‑584 directly targets CCND1 and inhibits cell proliferation and invasion in pancreatic cancer. Mol Med Rep. 2019;19:719-26.doi: 10.3892/mmr.2018.9651. 15. Ebrahimi Ghahnavieh L, Tabatabaeian H, Ebrahimi Ghahnavieh Z, Honardoost MA, Azadeh M, Moazeni Bistgani M, et al. Fluctuating expression of miR-584 in primary and high-grade gastric cancer. BMC Cancer. 2020;20:1-12. doi: 10.1186/s12885-020-07116-5. 16. Bahar M, Majd A, Abdi S. Effects of (ELF) extremely low frequency (50 Hz) AC and DC magnetic fields on lentil germination and seedlings growth. Iran Phys J. 2009,3:12-16. 17. Blank M, Goodman R. Electromagnetic initiation of transcription at specific DNA sites. J Cell Biochem 2001;81:689-92. doi: 10.1002/jcb.1102. 18. Eydgahi SM, Baharara J, Balanezhad SZ, Samani MA. The synergic effect of glycyrrhizic acid and low frequency electromagnetic field on angiogenesis in chick chorioallantoic membrane. Avicenna J Phytomed. 2015;5:174-81. 19. Panagopoulos DJ, Karabarbounis A, Margaritis LH. Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun. 2002;298:95-102.doi: 10.1016/S0006-291X(02)02393-8. 20. Filipovic N, Djukic T, Radovic M, Cvetkovic D, Curcic M, Markovic S, et al. Electromagnetic field investigation on different cancer cell lines. Cancer Cell Int. 2014;14:1-10. doi:10.1186/s12935-014-0084-x. 21. Mohajer JK, Nisbet A, Velliou E, Ajaz M, Schettino G. Biological effects of static magnetic field exposure in the context of MR-guided radiotherapy. Br J Radiol. 2019;92:20180484. doi: 10.1259/bjr.20180484. 22. Goodman R, Blank M. Insights into electromagnetic interaction mechanisms. J Cell Physiol. 2002;192: 16-22. doi: 10.1002/jcp.10098. 23. Morabito C, Rovetta F, Bizzarri M, Mazzoleni G, Fanò G, Mariggiò MA. Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach. Free Radic Biol Med. 2010;48:579-89. doi: 10.1016/j.freeradbiomed.2009.12.005.
|