1. Khaledi Sh, Ahmadi Sh. Disease s’Alzheimer in Pathology to Physiology from: Tau and Beta Amyloid. Shefaye Khatam 2016; 4:67-88. doi: 10.18869/acadpub.shefa.4.4.67. (Persian) 2. Soltani MR. The most important factors of dementia or Alzheimer's disease. National Conference of Physical Education 2019; (Persian). 3. Ghandehari S, Homayounitabrizi M, Ardalan P. Investigating the antioxidant and toxicity effects of green synthesized silver nanoparticles by aqueous extract of Ronas plant on liver cancer cells (HepG2) compared to normal skin fibroblast (HDF) cells. JIUMS 2018; 26:57-67. (Persian). doi: 10.29252/sjimu.26.2.57. 4. Ekhtiari-yengejeh S, Ezzatzadeh E. Rapid and eco-friendly synthesis of silver nanoparticles using Thymus trautvertteri leaf extract and evaluation of their antimicrobial activity. JARC 2017; 11:51-59. (Persian). 5. Mohammadigholami A. Study of antifungal properties and chemical composition of essential oil of Thymus kotscuyanus Boiss. Iran J Plant Physiol 2016; 1:52-62. (Persian). 6. Kaeidi A, Rahmani MR, Hassanshahi J. The Protective Effect of Carvacrol and Thymol as Main Polyphenolic Compounds of Thyme on Some Biologic Systems in Disease Condition: A Narrative Review. JRUMS 2020; 19:81-96. doi: 10.29252/jrums.19.1.81. 7. Mansouri H, Arasteh A, Khavari-Nejad RA. Phytochemical evaluation and antioxidant and inhibitory effects of Citrullus colocynthis L. extract on the production of amyloid nano–biofibrils from bovine serum albumin as a model protein. EJMP 2021; 8:34-48. (Persian). doi:20.1001.1.23223235.1399.8.4.3.9. 8. Haji Rustamlo B, Zhiani R, Omrani S. Biosynthesis of Silver Nanoparticles by Salvia officinalis Extract and Evaluation of their Antioxidant and Antimicrobial Activity Against Bacteria of Food Corruption. JIFST 2018; 11:107-18. doi:10.30495/jfst.2019.543963 (Persian). 9. Johnson I, Prabu HJ. Green synthesis and characterization of silver nanoparticles by leaf extracts of Cycas circinalis, Ficus amplissima, Commelina benghalensis and Lippia nodiflora. Int Nano Lett 2015; 5:43-51. doi:10.1007/s40089-014-0136-1. 10. Dousti B, Nabipour F, Hajiamraei A. Green synthesis of silver nanoparticle by using the aqueous extract of Fumaria Parviflora and investigation of their antibacterial and antioxidant activities. RJMS 2019; 26:105-17. doi: 20.1001.1.22287043.1398.26.6.11.1. (Persian). 11. Kalhor HR, Ashrafian H. Identification of an aspidospermine derivative from borage extract as an anti-amyloid compound: A possible link between protein aggregation and antimalarial drugs. J Phytochem 2017; 140:134-40. doi: 10.1016/j.phytochem.2017.05.001. (Persian). 12. Mahmoudi M, Quinlan-Pluck F, Monopoli MP, Sheibani S, Vali H, Dawson KA, et al. Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution. ACS Chem Neurosci 2013; 4:475-85. doi: 10.1021/cn300196n. 13. Cabaleiro-Lago C, Lynch I, Dawson KA, Linse S. Inhibition of IAPP and IAPP (20− 29) fibrillation by polymeric nanoparticles. Langmuir 2010; 26:3453-61. doi.org/10.1021/la902980d. 14. Baker KR, Rice L. The amyloidoses: clinical features, diagnosis and treatment. Methodist Debakey Cardiovasc J 2012; 8:3-7. doi: 10.14797/mdcj-8-3-3. 15. Kaviani N, Asfouri M. Biological Preparation of Silver Nanoparticles Using Artemisia sieberi. JMBS 2018; 9:23-27. (Persian). 16. Cabaleiro-Lago C, Szczepankiewicz O, Linse S. The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate. Langmuir 2012; 28:1852-57. doi.org/10.1021/la203078w. 17. Raja A, Ahmadi S, de Costa F, Li N, Kerman K. Attenuation of oxidative stress by cannabinoids and cannabis extracts in differentiated neuronal cells. Pharmaceuticals 2020; 13:328. doi: 10.3390/ph13110328.
|