:: Volume 31, Issue 2 (6-2023) ::
Journal of Ilam University of Medical Sciences 2023, 31(2): 1-14 Back to browse issues page
Chitosan Nanoparticles: As an Anti-Biofilm Agent against Acinetobacter Strains baumannii Representing the Multidrug Resistance Phenotype
Ghazal Ghajari * 1, Negin Rajaei2 , Arijit Chakraborty3
1- Dept of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran , ghajari.ghazal74@gmail.com
2- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
3- National Sports University, Ministry of Youth Affairs and Sports, Government of India, Imphal
Abstract:   (948 Views)
Introduction: Acinetobacter baumannii (A. baumannii) is a non-fermentative gram-negative coccobacillus that shows high resistance to antimicrobial compounds. Biofilm formation is one of the essential features of many Acinetobacter species that leads to high antibiotic resistance. This study aimed to evaluate the ability of biofilm formation and determine the antibiofilm activity of chitosan nanoparticles in clinical isolates of A. baumannii.
Material & Methods: This descriptive cross-sectional study was conducted in 2021 and investigated 100 isolates collected from different hospitals. Microscopic, biochemical, and molecular tests were performed to identify the bacteria. The antibiotic resistance pattern of the isolates was evaluated by the disk diffusion method against 10 antibiotics, and the ability to produce biofilm was evaluated by microtiter plate method. Subsequently, 16SrRNA and CsuA genes were identified by multiplex-PCR molecular methods. After the preparation of chitosan nanoparticles and determination of MIC concentration, antibiofilm activity was measured by plate microtiter, and Real-Time PCR was used to examine the expression of the CsuA gene involved in biofilm.
Findings: In this study, out of 100 isolates examined, 29 isolates were confirmed as A. baumannii. Among 29 isolates, ceftazidime had the highest drug resistance (75.86%). The CsuA gene was detected in 51.72% of the isolates. Moreover, using a microtiter plate and Real-Time PCR, the level of antibiotic activity of chitosan nanoparticles was determined at a significant level of P<0.01.
Discussion & Conclusion: Considering the anti-biofilm effects found in the present study, it seems that chitosan nanoparticles can be used as a pharmaceutical candidate in the pharmaceutical industry.
Keywords: Acinetobacter baumannii, Biofilm, Chitosan nanoparticles
Full-Text [PDF 1411 kb]   (683 Downloads)    
Type of Study: Research | Subject: Bacteriology
Received: 2022/08/1 | Accepted: 2022/12/26 | Published: 2023/06/5
References
1. Lemiech-Mirowska E, Kiersnowska ZM, Michałkiewicz M, Depta A, Marczak M. Nosocomial infections as one of the most important problems of healthcare system. Ann Agric Environ Med 2021;28. doi: 10.26444/aaem/122629.
2. Piri Gharaghie T, Sadat Shandiz SA, Beiranvand S. Evaluation of silver nanoparticles effects on bla-per1 gene expression for biofilm formation in isolates of antibiotic-resistant Acientobacter Bumanni by real time PCR method. JCMR 2022; 35:349-66.
3. Nocera FP, Attili AR, De Martino L. Acinetobacter baumannii: its clinical significance in human and veterinary medicine. Pathogens 2021; 10:127. doi: 10.3390/pathogens10020127.
4. Piri Gharaghie T, Sadat Shandiz SA. The inhibitory effects of silver nanoparticles on bap gene expression in antibiotic-resistant acientobacter bumanni isolates using real-time PCR. J Ilam Uni Med Sci 2018;26: 175-85.doi: 10.29252/sjimu.26.4.175.
5. Bowler P, Murphy C, Wolcott R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob Resist Infect Control 2020; 9:1-5. doi: 10.1186/s13756-020-00830-6.
6. Piri-Gharaghie T, Doosti A, Mirzaei SA. Identification of antigenic properties of Acinetobacter baumannii proteins as novel putative vaccine candidates using reverse vaccinology approach. Appl Biochem Biotechnol 2022; 194:4892-914. doi: 10.1007/s12010-022-03995-5.
7. Pakharukova N, Garnett JA, Tuittila M, Paavilainen S, Diallo M, Xu Y, et al. Structural insight into archaic and alternative chaperone-usher pathways reveals a novel mechanism of pilus biogenesis. PLoS Pathog 2015;11: e1005269. doi: 10.1371/journal.ppat.1005269.
8. Gaddy JA, Actis LA. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol 2009;4: 273-8. doi: 10.2217/fmb.09.5.
9. Piri‐Gharaghie T, Beiranvand S, Riahi A, Shirin NJ, Badmasti F, Mirzaie A, et al. Fabrication and characterization of thymol‐loaded chitosan nanogels: improved antibacterial and anti‐biofilm activities with negligible cytotoxicity. Chem Biodivers 2022;19: e202100426. doi: 10.1002/cbdv.202100426.
10. Piri-Gharaghie T, Doosti A, Mirzaei SA. Fabrication and characterization of pcDNA3. 1 (+) location within chitosan/nanoparticles complexes for enhanced gene delivery. Iran J Biotechnol 2022; 20:88-100. doi: 10.30498/ijb.2022.297534.3110.
11. Donsì F, Annunziata M, Sessa M, Ferrari G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci Technol 2011; 44:1908-14. doi:10.1016/j.lwt.2011.03.003.
12. Chou SF, Gunaseelan S, Kiellani MH, Thottempudi VV, Neuenschwander P, Nie H. A review of injectable and implantable biomaterials for treatment and repair of soft tissues in wound healing. J Nanotechnol 2017;2017. doi:10.1155/2017/6341710.
13. Van Vuuren SF, du Toit LC, Parry A, Pillay V, Choonara YE. Encapsulation of essential oils within a polymeric liposomal formulation for enhancement of antimicrobial efficacy. Nat Prod Commun 2010; 5:1934578X1000500912.
14. Kabiri-Samani S, Sanatgaran M, Shojaei-Barjoei N, Moosavi R, Shaqaqi P, Kabiri H. Alternatives to Antibiotics GOAL: ELEVATING Antibiotic Resistance During the Post-COVID Period. J Pers Med 2022; 7:36-42. doi:10.22034/pmj.2022.253553.
15. Piri-Gharaghie T, Ghajari G, Hassanpoor M, Jegargoshe-Shirin N, Soosanirad M, Khayati S, et al. Investigation of antibacterial and anticancer effects of novel niosomal formulated Persian Gulf Sea cucumber extracts. Heliyon 2023;9. doi: 10.1016/j.heliyon. 2023.e14149.
16. Asadipour E, Asgari M, Mousavi P, piri gharaghie T, Ghajari G, Mirzaei A. Nano‐Biotechnology and challenges of drug delivery system in cancer treatment pathway. Chem Biodiver 2023:e202201072. doi: 10.1002/cbdv.202201072.
17. Taghiloo S, Ghajari G, Zand Z, Kabiri-Samani S, Kabiri H, Rajaei N, et al. Designing Alginate/Chitosan Nanoparticles Containing Echinacea angustifolia: A Novel Candidate For Combating Multidrug-resistant Staphylococcus aureus. Chem Biodivers 2023: e202201008. doi: 10.1002/cbdv.202201008.
18. Zarinnezhad A, Shahhoseini MH, Piri Gharaghie T. Evaluating the relative frequency of fungal infections in the serum of patients with multiple sclerosis and healthy subjects using PCR. Biolo J Microorganism 2021; 10:37-50. doi:10.22108/bjm.2020.122265.1288.
19. Piri-Gharaghie T, Doosti A, Mirzaei SA. Novel adjuvant nano-vaccine induced immune response against Acinetobacter baumannii. AMB Express 2023; 13:1-6. doi:10.1186/s13568-023-01531-0.
20. Hatami R. The frequency of multidrug-resistance and extensively drug-resistant Acinetobacter baumannii in west of Iran. J Clin Microbiol Infect Dis 2018; 1:4-8.
21. Goudarzi H, Douraghi M, Ghalavand Z, Goudarzi M. Assessment of antibiotic resistance pattern in Acinetobacter bumannii carrying bla oxA type genes isolated from hospitalized patients. Nov Biomed 2013; 1:54-61. doi:10.22037/nbm.v1i2.5093.
22. Kooti S, Motamedifar M, Sarvari J. Antibiotic resistance profile and distribution of oxacillinase genes among clinical isolates of Acinetobacter baumannii in Shiraz teaching hospitals, 2012-2013. Jundishapur J Microbiol 2015;8. doi: 10.5812/jjm.20215v2.
23. Longo F, Vuotto C, Donelli G. Biofilm formation in Acinetobacter baumannii. New Microbiol 2014; 37:119-27.
24. Qi L, Li H, Zhang C, Liang B, Li J, Wang L, et al. Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. Front Microbiol 2016; 7:483. 10.3389/fmicb.2016.00483/full.
25. Dadgar T, Vahedi Z, Yazdansetad S, Kiaei E, Asaadi H. Phenotypic Investigation of Biofilm Formation and the Prevalence of icaA and icaD Genes in Staphylococcus epidermidis Isolates. Iran J Med Microbiol 2019;12: 371-81.doi: 10.30699/ijmm.12.6.371.
26. Alqahtani F, Aleanizy F, El Tahir E, Alhabib H, Alsaif R, Shazly G, et al. Antibacterial activity of chitosan nanoparticles against pathogenic N. gonorrhoea. Int J Nanomedicine 2020:7877-87. doi/full/10.2147/IJN.S272736.
27. Gharaghie TP, Beiranvand S, Abbas Doosti AH, Ghadiri SH. A review of the epidemiology and clinical signs of SARS-COV-2. NCMB J. 2020; 11:103-20. ‎
28. Piri-Gharaghie T, Jegargoshe-Shirin N, Saremi-Nouri S, Khademhosseini SH, Hoseinnezhad-Lazarjani E, Mousavi A, et al. Effects of Imipenem-containing Niosome nanoparticles against high prevalence methicillin-resistant Staphylococcus Epidermidis biofilm formed. Sci Rep 2022; 12:5140. doi: 10.1038/s41598-022-09195-9.

Ethics code: IR.IAU.SHK. REC.2021.06.15


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 31, Issue 2 (6-2023) Back to browse issues page