1. Fitzmaurice C, Allen C, Barber R, Barregard L, Bhutta Z, Brenner H, et al. Global, regional and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study global burden of disease cancer collaboration. JAMA Oncol 2017;3: 524-48. doi: 10.1001/jamaoncol.2016.5688 2. Fernandez EJ. Allosteric pathways in nuclear receptors potential targets for drug design. Pharmacol Ther 2018; 183: 152-9. doi: 10.1016/j.pharmthera.2017.10.014 3. Willis RE. Targeted cancer therapy vital oncogenes and a new molecular genetic paradigm for cancer initiation progression and treatment. Int J Mol Sci 2016; 17: 1552-75. doi: 10.3390/ijms17091552 4. Nooridaloii M, Tabarestani S. Molecular genetics and gene therapy in breast cancer a review article. J Sabzevar Uni Med Sci 2010; 17:74-87. doi: 10.29252/iau.28.4.259 5. Nooridaloii M, Zekri A. Aura kinase family roles in cancer diagnosis and treatment a review article. Med Sci J Islamic Azad Uni Tehran 2011; 21: 71-81. 6. Sawyers C. Targeted cancer therapy. Nature 2004; 432: 294-7. doi: 10.1038/nature03095 7. Vulfovich M, Saba N. Molecular biological design of novel antineoplastic therapies. Expert Opin Investig Drugs 2004; 13: 577-607. doi: 10.1517/13543784.13.6.577 8. Olgen S. Overview on anticancer drug design and development. Curr Med Chem 2018; 25: 1704-19. doi: 10.2174/0929867325666171129215610 9. Neidle S. Cancer drug design and discovery. Book Published 2014; doi: 10.1016/C2011-0-07765-7 10. Magalhaes LG, Ferreira LLG, Andricopulo AD. Recent advances and perspectives in cancer drug design. An Acad Bras Cienc 2018; 14: 1233-50. doi: 10.1590/0001-3765201820170823 11. Cui W, Aouidate A, Wang S, Yu Q, Li Y, Yuan S. Discovering anti-cancer drugs via computational methods. Front Pharmacol 2020; 11: 1-14. doi: 10.3389/fphar.2020.00733 12. Torres PHM, Sodero ACR, Jofily P, Silva JRFP. Key topics in molecular docking for drug design. Int J Mol Sci 2019; 20: 4574-603. doi: 10.3390/ijms20184574 13. Wang G, Zhu W. Molecular docking for drug discovery and development a widely used approach but far from perfect. Future Med Chem 2016; 8: 1707-10. doi: 10.4155/fmc-2016-0143 14. Sethi A, Khusbhoo J, Sasikala K, Alvala M. Molecular docking in modern drug discovery principles and recent applications. Book Published 2019; doi: 10.5772/intechopen.85991 15. Ruyck J, Brysbaert G, Blossey R, Lensink M. Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 2016; 9: 1-11. doi: 10.2147/AABC.S105289 16. Jakhar R, Dangi M, Khichi A, Chhillar AK. Relevance of molecular docking studies in drug designing. Curr Bioinformatics 2020; 15: 270-78. doi:10.2174/1574893615666191219094216 17. Collins I, Workman P. New approaches to molecular cancer therapeutics. Nat Chem Biol 2006; 2: 689-700. doi: 10.1038/nchembio840 18. Wadood A, Ahmed N, Shah L, Ahmad A, Hassan H, Shams S. In-silico drug design: An approach which revolutionarised the drug discovery process. OA drug design & delivery 2013; 1:3-7. doi: 10.13172/2054- 4057-1-1-1119 19. Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking a powerful approach for structure based drug discovery. Curr Comput Aided Drug Des 2011; 7: 146-57. doi: 10.2174/157340911 795677602 20. Bhogale A, Patel N, Mariam J, Dongre PM, Miotello A, Kothari DC. Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies. Colloids Surf B Biointerfaces 2014; 113: 276-84. doi: 10.1016/j.colsurfb.2013.09.021 21. Chen L, Wu M, LinX, Xie Z. Study on the interaction between human serum albumin and a novel bioactive acridine derivative using optical spectroscopy. Luminescence 2011; 26: 172-7. doi: 10.1002/bio.1201 22. Yang H, Huang Y, Liu J, Tang P, Sun Q, Xiong X, et al. Binding modes of environmental endocrine disruptors to human serum albumin insights from STD-NMR, ITC, spectroscopic and molecular docking studies. Sci Rep 2017; 7:11126-37. doi: 10.1038/s41598-017-11604-3 23. Markovic OS, Cvijetic IN, Zlatovic MV, Opsenica IM, Konstantinovic JM, Terzic Jovanovic NV, et al. Human serum albumin binding of certain antimalarial. Spectrochim. Acta A Mol Biomol Spectrosc 2018; 192: 128-36. doi: 10.1016/j.saa. 2017.10.061 24. Mihaelamic AP, Neamţu S, Floare CG, Bogdan M. Calorimetric and spectroscopic studies of the interaction between zidovudine and human serum albumin. Spectrochimica Acta Part A: Spectrochim. Acta A Mol Biomol Spectrosc 2018; 191: 226-32. doi: 10.1016/j.saa.2017.10.032 25. Yamasakia K, Nishic K, Anrakua M, Taguchia K, Maruyamad T, Otagiri M, Metal catalyzed oxidation of human serum albumin does not alter the interactive binding to the two principal drug binding sites. Biochem Biophys Rep. 2018; 14: 155-60. doi: 10.1016/j.bbrep.2018.05.002 26. Shiyovich A, Sasson L, Lev E, Solodky A, Kornowski R, Perl L. Relation of hypoal-buminemia to response to aspirin in patients with stable coronary artery disease. Am J Cardiol 2020; 125: 303-8. doi: 10.1016/j.amjcard. 2019.10.055 27. Rahnama E, Mahmoodianmoghaddam M, Khorsandahmadi, S, Saberi MR, Chamani J. Binding site identification of metformin to human serum albumin and glycated human serum albumin by spectroscopic and molecular modeling techniques a comparison study. J Biomol Struct Dyn2015; 33: 513-33. doi:10.1080/07391102. 2014.893540 28. Litus EA, Kazakov AS, Deryusheva EI, Nemashkalova EL, Shevelyova MP, Nazipova AA, et al. Serotonin promotes serum albumin interaction with the monomeric amyloid β peptide. Int J Mol Sci 2021; 22: 5896-910. doi: 10.3390/ ijms22115896 29. Fleming RA, Milano G, Thyss A, Etienne MCh, Renee N, Schneider M, et al. Correlation between dihydropyrimidine dehydrogenase activity in peripheral mononuclear cells and systemic clearance of fluorouracil in cancer atients. Cancer Res1992; 52:2899-902 30. Ghafourifard S, Abak A, Tondro anamag F, Shoorei H, Fattahi F, et al. 5-Fluorouracil: A Narrative review on the role of regulatory mechanisms in driving resistance to this chemotherapeutic agent. Front Oncol 2021; 11: 1-21. doi: 10.3389/fonc.2021.658636 31. Christensen SH, Roest B, Besselink N, Janssen R, Boymans S, Artens JWM, et al. 5-Fluorouracil treatment induces characteristic T>G mutations in human cancer. Nat Commun 2019; 10: 4571-82.doi:10.1038/s41467-019-12594-8 32. Parsa NZ, Mukherjee AB, Gaidano G, Hauptschein RS, Dallafavera R, Lenoir G. Cytogenetic and molecular analyis of 6q deletions in Burkitt΄s lymphoma cell lines. Genes Chromosom Cancer 1994; 9: 13-8. doi: 10.1002/gcc.2870090104. 33. Paal K, Shkarupin A, Beckford L. Paclitaxel binding to human serum albumin automated docking studies. Bioorg Med Chem 2007; 15: 1323-9. doi: 10.1016/j.bmc.2006.11.012 34. Ajmal MR, Nusrat S, Alam P, Zaidi N, Khan MV, Zaman M. Interaction of anticancer drug clofarabine with human serum albumin and human α-1 acid glycoprotein. Spectroscopic andmolecular docking approach. J Pharm Biomed Anal 2017; 135: 105-6. doi: 10.1016/j.jpba.2016.12.001. 35. Sun Z, XuH, Cao Y, Wang F, Mi W. Elucidating the interaction of propofol and serum albumin byspectroscopic and docking methods. J Mol Liq 2016; 219: 405-10. doi: 10.1016/j.molliq. 2016.03.040. 36. Heydargoy MH. Investigation of antiviral drugs with direct effect on RNA polymerases and simulation of their binding to SARS-CoV-2 RNA dependent RNA polymerase by molecular docking method. Iran J Microbiol 2020; 14: 342-7. doi: 10.30699/ijmm.14.4.342. 37. Yuriev E, Holien J, Ramsland PA. Improvements, trends and new ideas in molecular docking 2012-2013 in review. J Mol Recognit 2015; 28: 581-604. doi: 10.1002/jmr.2471
|