1. Valdes N, Soto P, Cottet L, Alarcon P, Gonzalez A, Castillo A, et al. Draft genome sequence of Janthinobacterium lividum strain MTR reveals its mechanism of capnophilic behavior. Stand Genomic Sci 2015;10:1-10. doi: 10.1186/s40793-015-0104-z 2. Pauer H, Hardoim CCP, Teixeira FL, Miranda KR, Barbirato DdS, Carvalho DPd, et al. Impact of violacein from Chromobacterium violaceum on the mammalian gut microbiome. PloS one 2018;13:e0203748. doi: 10.1371/journal.pone.0203748 3. O’Brien K, Perron GG, Jude BA. Draft genome sequence of a red-pigmented Janthinobacterium sp. native to the Hudson Valley watershed. Genome Announc 2018;6:e01429-17. doi: 10.1128/genomeA.01429-17 4. Baricz A, Teban A, Chiriac CM, Szekeres E, Farkas A, Nica M, et al. Investigating the potential use of an Antarctic variant of Janthinobacterium lividum for tackling antimicrobial resistance in a One Health approach. Sci Rep 2018;8:1-12. doi: 10.1038/s41598-018-33691-6 5. Ferro P, Vaz-Moreira I, Manaia CM. Betaproteobacteria are predominant in drinking water: are there reasons for concern? Crit Rev Microbiol 2019;45:649-67. doi: 10.1080/1040841X.2019.1680602 6. Schloss PD, Allen HK, Klimowicz AK, Mlot C, Gross JA, Savengsuksa S, et al. Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. DNA Cell Biol 2010;29:533-41. doi: 10.1089/dna.2010.1020 7. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, et al. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb Ecol 2018; 75: 1049-62 doi: 10.1007/s00248-017-1095-7 8. Rokade MT, Pethe AS. Isolation, identificatio, extraaction and production of antibacterial violacein pigment by psychrotrophic bacterium MTR17 strain. J Glob Biosci 2017;6:5077-83. doi: 10.1155/2015/465056 9. Jones JA, Toparlak ÖD, Koffas MA. Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 2015;33:52-9. doi: 10.1016/j.copbio.2014.11.013 10. Arif S, Batool A, Khalid N, Ahmed I, Janjua HA. Comparative analysis of stability and biological activities of violacein and starch capped silver nanoparticles. RSC adv 2017;7:4468-78. doi: 10.1039/C6RA25806A 11. Khaksar F, Rigi G, Mirdamadian SH. Creation of a violacein pigment hybrid with silver and titanium dioxide nanoparticles to produce multifunctional textiles with antimicrobial properties. Nanomed Res J 2021;6:60-72. doi: 10.22034/nmrj.2021.01.007 12. Khairy M, Kamal R, Mousa M. Anti-microbial and methylene blue dye adsorption properties of cotton fabrics modified with TiO2, Fe, Ag-doped TiO2, and graphene oxide nanomaterials. Textile Res J 2021:00405175211066148. doi: 10.1177/00405 13. 175211066148 14. Palukurty MA, Darsi GM, Somalanka SR. Effect of Aeration on Growth and Production of Violacein by Chromobacterium violaceum using a Bubble Column Reactor. 2019; 47, 777-780. doi: 10.3390/antiox11050849 15. Masuelli L, Pantanella F, La Regina G, Benvenuto M, Fantini M, Mattera R, et al. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo. Tumor Biol 2016;37:3705-17. doi: 10.1007/s13277-015-4207-3 16. Kanelli M, Mandic M, Kalakona M, Vasilakos S, Kekos D, Nikodinovic-Runic J, et al. Microbial production of violacein and process optimization for dyeing polyamide fabrics with acquired antimicrobial properties. Front Microbiol 2018;9:1495. doi: 10.3389/fmicb.2018.01495 17. Choi SY, Lim S, Yoon K-h, Lee JI, Mitchell RJ. Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin. J Biol Eng 2021;15:1-16. doi: 10.1186/s13036-021-00262-9 18. Kim Y, Choi J. Dyeing properties of microbial prodiginine from Zooshikella rubidus for silk fabrics. Fiber Polym 2015;16:1981-7. doi: 10.1007/s12221-015-5211-3 19. Uddin F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose 2021;28:10715-39. doi: 10.1007/s10570-021-04228-4 20. Aye AM, Bonnin-Jusserand M, Brian-Jaisson F, Ortalo-Magné A, Culioli G, Nevry RK, et al. Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14. Microbiol 2015;161:2039-51. doi: 10.1099/mic.0.000147 21. Subramanian P, Gurunathan J. Differential production of pigments by Halophilic bacteria under the effect of salt and evaluation of their antioxidant activity. Appl Biochem Biotechnol 2020;190:391-409. doi: doi: 10.1007/s12010-019-03107-w 22. Sadowska JM, Genoud KJ, Kelly DJ, O'Brien FJ. Bone biomaterials for overcoming antimicrobial resistance: Advances in non-antibiotic antimi-crobial approaches for regeneration of infected osseous tissue. Materials Today 2021: 136-54. doi: 10.1016/j.mattod.2020.12.018 23. Gulzar T, Farooq T, Kiran S, Ahmad I, Hameed A. The Impact and Prospects of Green Chemistry for Textile Technology. Elsevier 2019; 1-20. doi: 10.1016/C2017-0-01957-2 24. Wu X, Kazakov AE, Gushgari-Doyle S, Yu X, Trotter V, Stuart RK, et al. Comparative Genomics Reveals Insights into Induction of Violacein Biosynthesis and Adaptive Evolution in Janthino-bacterium. Microbiol Spectr 2021;9:e01414-21. doi: 10.1128/Spectrum.01414-21 25. Kuzyk SB, Pritchard AO, Plouffe J, Sorensen JL, Yurkov V. Psychrotrophic violacein-producing bacteria isolated from Lake Winnipeg, Canada. J Great Lakes Res 2021; 47: 715-24. doi: 10.1016/j.jglr.2020.04.008
|