:: Volume 28, Issue 4 (10-2020) ::
Journal of Ilam University of Medical Sciences 2020, 28(4): 36-46 Back to browse issues page
Biosynthesis of Zinc Oxide Nanoparticles using Intracellular Extract of Saccharomyces cerevisiae and Evaluation of its Antibacterial and Antioxidant Activities
Razieh Motazedi1 , Somayeh Rahaiee * 2, Mahboobeh Zare3
1- Dept of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
2- Dept of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran , s.rahaiee@ausmt.ac.ir
3- Dept of Medicinal Plant, Faculty of Medicinal Plants, Amol University of Special Modern Technologies, Amol, Iran
Abstract:   (3144 Views)
Introduction: Attention to the biosynthesis of nanoparticles (NPs) has been increased recently since they are cost-effective, eco-friendly, and potential alternatives to chemical and physical methods. This study aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using an intracellular extract of Saccharomyces cerevisiae. Moreover, it was attempted to evaluate their antibacterial and antioxidant effects.
 
Materials & Methods: After the preparation and identification of the physical characteristics of the ZnO NPs, their antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Ability of Plasma (FRAP). Moreover, the antibacterial activity of NPs was tested against Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative bacteria (Escherichia coli) using a disc diffusion method. Ethics code: IR.ausmt.rec.1398.11.33
Findings: The results showed that the synthesized NPs had a spherical shape, and their diameter size was < 30 nm. A good absorption at 370 nm confirmed the presence of ZnO NPs. These NPs depicted an improved antibacterial activity against S. aureus. Moreover, they showed concentration-dependent antioxidant activity in both DPPH and FRAP.
 
Discussions & Conclusions: The results indicated that the biosynthesized ZnO NPs had antibacterial and antioxidant activities. This suggests that ZnO NPs can be used in food packaging and cosmetic products. In addition, they can be utilized as an alternative to synthetic antibiotics. However, further studies are required to be conducted in this regard.
Keywords: ZnO NPs, Biosynthesis, Saccharomyces cerevisiae, Antibacterial, Antioxidant
Full-Text [PDF 1056 kb]   (956 Downloads)    
Type of Study: Research | Subject: biotechnolohgy
Received: 2020/02/5 | Accepted: 2020/07/12 | Published: 2020/10/31
References
1. Mala JGS, Rose C. Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J Biotechnol 2014; 170:73-8. doi:10.1016/ j.jbiotec.2013.11.017.
2. Benelmekki M. Designing hybrid nanoparticles. 2th ed. Morgan Claypool Publishing. 2015; P.231-9.doi. 10.1088/978-1-6270-5469-0.
3. Venkatesh N, Bhowmik H, Kuila A. Metallic nanoparticle a review. BJSTR 2018; 4: 3765-75. doi.10.26717/BJSTR.2018.04.001011.
4. Umamaheswari A, Lakshmana S, Puratchikody A. Biosynthesis of zinc oxide nanoparticle a review on greener approach. MOJBB 2018; 5: 151-4. doi.10.15406/ mojbb.2018.05.00096.
5. Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl 2018; 2018. doi.10.1155/2018/1062562.
6. Krol A, Pomastowski P, Rafinska K, Railean V, Buszewski B. Zinc oxide nanoparticles synthesis antiseptic activity and toxicity mechanism. Adv Coll Int Sci 2017; 249: 37-52. doi.10.1016/j.cis.2017.07.033.
7. Kolodziejczak A, Jesionowski T. Zinc oxide from synthesis to application a review. Materials 2014; 7: 2833-81. doi.10.3390/ma7042833.
8. Espitia PJP, Soares NDFF, Reis JS, Andrade NJ, Cruz RS, Medeiros EAA. Zinc oxide nanoparticles synthesis antimicrobial activity and food packaging applications. Food Bioproc Tech 2012; 5: 1447-64. doi.10.1007/s11947-012-0797-6.
9. Taran M, Rad M, Alavi M. Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. Bio Impacts 2018; 8:81. doi.10.15171/bi.2018.10.
10. Das D, Nath B C, Phukon P, Dolui SK. Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Coll Sur 2013; 111: 556-60 doi.10.1016/j.colsurfb.2013.06.041.
11. Khatami M, Alijani HQ, Heli H, Sharifi I. Rectangular shaped zinc oxide nanoparticles green synthesis by stevia and its biomedical efficiency. Ceram Int 2018; 44:15596-602. doi.10.1016/j.ceramint.2018.05.224
12. Begum S, Ahmaruzzaman M, Adhikari PP. Ecofriendly bio synthetic route to synthesize ZnO nanoparticles using eryngium foetidum L. and their activity against pathogenic bacteria. Mater Lett 2018; 228: 37-41. doi.10.1016/j.matlet.2018.05.091.
13. Iravani S. Bacteria in nanoparticle synthesis current status and future prospects. Int Sch Res Not 2014; 2:111-6. doi.10.1155/2014/359316.
14. Moghaddam AB, Moniri M, Azizi S, Rahim RA, Ariff AB, Saad WZ, et al. Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules 2017; 22: 872. doi. 10.3390/molecules22060872.
15. Basnet P, Chanu TI, Samanta D, Chatterjee, S. A review on bio synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J Photochem Photobiol Biol 2018; 183: 201-21. doi.10.1016/j.jphotobiol.2018.04.036.
16. Jha AK, Prasad K, Prasad K. A green low cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 2009; 43: 303-6. doi.10.1016/j.bej.2008.10.016.
17. Seyidoglu N, Peker S. Effects of different doses of probiotic yeast Saccharomyces cerevisiae on the duodenal mucosa in rabbits. Indian J Anim Res 2015; 49: 602-6. doi.10.18805/ijar.5570.
18. Korbekandi H, Mohseni S, Mardanijouneghani R, Pourhossein M, Iravani S. Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Art Cell Nanomed Biotechnol 2016; 44: 235-9. doi.10.3109/21691401.2014.937870.
19. Ebadi M, Zolfaghari MR, Aghaei SS, Zargar M, Shafiei M, Zahiri HS, et al. A bio inspired strategy for the synthesis of zinc oxide nanoparticles using the cell extract of cyanobacterium Nostoc sp. EA03 from biological function to toxicity evaluation. Rsc Adv 2019; 9: 23508-25. doi.10.1039/C9RA03962G.
20. Erlandsen SL, Frethem C, Chen Y. Field emission scanning electron microscopy entering the 21st century nanometer resolution and molecular topography of cell structure. J Histotechnol 2000; 23: 249-59. doi.10.1179/his.2000.23.3.249.
21. ‌21. Khan ZUH, Sadiq HM, Shah NS, Khan AU, Muhammad N, Hassan SU, et al. Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. J Photochem Photobiol Biol 2019; 192: 147-57. doi.10.1016/j.jphotobiol.2019.01.013.
22. Shobha N, Nanda N, Giresha AS, Manjappa P, Sophiya P, Dharmappa KK, Nagabhushana BM. Synthesis and characterization of Zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. Mate Sci Eng 2019; 97:842-50. doi.10.1016/j.msec.2018.12.023.
23. Shamim A, Abid MB, Mahmood T. Biogenic synthesis of Zinc oxide nanoparticles using a fungus Aspargillus niger and their characterization. Int. J Chem 2019; 11: 119-26. doi.10.5539/ijc.v11n2p119.
24. Jamdagni P, Khatri P, Rana JS. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor tristis and their antifungal activity. J King Saud Uni Sci 2018; 30: 168-75. doi.10.1016/j.jksus.2016.10.00.2.
25. Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 2007; 90: 213902. doi.10.1063/1.2742324.
26. Rajan A, Cherian E, Baskar G. Biosynthesis of zinc oxide nanoparticles using Aspergillus fumigatus JCF and its antibacterial activity. Int J Mod Sci Technol 2016; 1: 52-7.
27. Banerjee S, Saikia JP, Kumar A, Konwar BK. Antioxidant activity and haemolysis prevention efficiency of polyaniline nanofibers. J Nanotechnol 2009; 21: 45101.doi.10.1088/0957-4484/21/4/045101.
28. Madan HR, Sharma SC, Suresh D, Vidya YS, Nagabhushana H, Rajanaik H, et al. Facile green fabrication of nanostructure ZnO plates bullets flower prismatic tip closed pine cone their antibacterial antioxidant photoluminescent and photocatalytic properties. Acta Mol Biomol Spectrosc 2016; 152: 404-16. doi.10.1016/j.saa.2015.07.067.

Ethics code: Ir.ausmt.rec.1398.11.33



XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 28, Issue 4 (10-2020) Back to browse issues page