اصابط آلانده‌های بینن، تولوئن و گزیلن در هوای مجمعه پتروشیمی

بونده ماهشهر در سال ۱۳۸۷-۸۸

چکیده

مقدمه: ترکیبات آتی فرار از آلانده‌های بسیار مهم هستند که در صنایع پتروشیمی و نفتی باعث ایجاد مخاطراتی برای پرسنل ناشان در کارخانجات ها و تاثیر بر محیط زیست می‌گردد. هدف از این مطالعه آزیبی و تعیین مقدار آلانده‌های بینن، تولوئن و گزیلن (آترو، پارا و متا) در هوای مجمعه پتروشیمی ماهشهر می‌باشد.

مواد و روش ها: این مطالعه در مطالعه‌نشانده در واحدهای پتروشیمی جهت انتدازه‌گیری غلظت هیدروکربن های انجم شده انجام شد.

نتایج: غلظت تولوئن و گزیلن از قاعده انتدازه‌گیری به‌طور متوسط به‌صورت مشابه در روستا و نقاط مختلف همسایه مشاهده شد که در صورت افزایش مصرف هوا و کاهش مصرف آب و همچنین افزایش کیفیت هوا و تغییرات مکانیکی باد و بادگیر، می‌تواند اثرات مثبتی بر محیط زیست داشته باشد.

استاد دستگاه کارمومترک‌های سنجش‌های (مدل: CP-3800، CP-338) با نشانه‌گذاری این انجام گرفته و تجزیه نمونه‌ها به وسیله SPSS به ستون‌های موبی انجام گردیده است. تحلیل داده‌ها با کمک نرم‌افزار SPSS انجام گردید.

بناهای یپ بی‌پوند: نتایج اندوره‌گیری ترکیبات نشان داد که غلظت بینن در فصول تابستان و زمستان به ترتیب ۳۲ درصد و ۱۳ درصد از محل تمام نمونه برداری جمع‌آوری شده در مجمعه پتروشیمی بیشتر از مقادیر حدود آستانه مجاز تصویب شده برای سیستم مطابق محدودیت‌های بالا و کمیت فنی پدیده کیفیت آب ارسال می‌باشد. هم‌چنین نتایج نشان داد که بین مقادیر غلظت آلانده‌های با هوا انجام می‌شود که این نتایج نشان می‌دهد که این تغییرات نشان‌دهنده بهبود در حرفه‌ایتی می‌باشد.

پیشنهاد گیری: ارزیابی این ترکیبات نشان می‌دهد که با افزایش غلظت در تابستان و با پایین‌ترین غلظت در فصل زمستان می‌باشد. افزایش غلظت در تابستان به دلیل افزایش تبخیر ترکیبات قرار آن‌ها از محل‌هایی دارد که بر اثر افزایش دما و سرعت باد افزایش می‌یابد.

واژه‌های کلیدی: ترکیبات آتی فرار، پتروشیمی، هوای محیطی، گاز کرمومترک‌های سنجش
مقدمه
رشد فن اوری و صنعته، کشف و کاربرد ده ها هزار نوع از پژوهشی با خواص مختلف فیزیکی، شیمیایی و فیزیولوژیکی مختلف موجب اولویت هواگردش شهرها و محیط های کاری گردیده است. در این میان صنعت پتروشیمی با این پایه ها و درک انسان از اهمیت نقش پلیر های نفتی شکل گرفت. این صنعت به طور مستقیم و غیر مستقیم می تواند اثرات مخرب بر محیط زیست و زندگی انسان داشته باشد. گفت که از مهم ترین خطرات اصلی که از دست آمده و روزگاری های و روش های صنعتی مصرف و بهبود می کند، است. انتشار هیدروکوین های آلی در هوا است. بدون شک اولین گام در راستای کنترل آلاینده ها، اندازه گیری و تجزیه آن هاست. برای آن که کمیته ها و کمیته های ممکن مقایسه با حدود معیار نهایی کانت آلی ها بهمراه نخواهد بود. در فراهم کردن مدل ساختار کیفیتی در سال 1389 و 1390 در مجتمع پتروشیمی بزرگ در فصل نیمه و زمستان انجام گرفت، نشان داد که در تمام قسمت های مجتمع منازعه های مهم در این جنگ‌ها کلی می‌باشد. همچنین بازه رمتوطه میزان دمای اولویت و در جنگ‌های دیگر غلبه ارتباط دارد. همچنین در مطالعه ای که در ازدیکی برخی های بند مرکز شهر هوستون جهت اندازه گیری ترکیبات قرار آلی و سرگذاری ناچیز صورت گرفت مشخص شد که بین انتشار باید ترکیبات در شهر هوستون، قابلیت بالای پتروشیمی مخصوصاً در نیمه رابطه معنی داری دارودره و بالاترین غلبه این ترکیبات رابطه با این فضال به ترکیبات قرار آلی در پالایشگاه نفت در تیونان در سال 2004 صورت گرفت. منشأی که در جهت بازده و سرعت دیگر غلبه منطقه نقش اصلی را در توزیع آلودگی ترکیبات قرار آلی در و هوا و انتشار از مجتمع هوستون منطقه داشته است(3). در مطالعه ای که از سیبیور 2000 تا سیبیور 2001
استفاده گردید. در این رابطه m غلظت محلول

\[v = \frac{m}{p} \]

اسب محلول های استاندارد کاردبردی با

\[\text{فیلتریت} \times 0.22 \text{mm ID BP10} 0.25 \text{ Column capillary, Serial No:4792B07 P/N: 054253} \]

آمکسیتوگرافی - طیف سنج جرمی(مطابق با تنظیمات جدول 1)، از

\[\text{Microsoft Office Excel} \]

\[\text{اندازه‌گیری مولکول‌های استاندارد(کالیراسیون)} \]

\[\text{به دست‌آمد.} \]

جدول شماره 1 شرایط تجزیه ای دستگاه گاز آمکسیتوگرافی- طیف سنجی جرمی جهت تجزیه نمونه‌های هوایی.

<table>
<thead>
<tr>
<th>دستگاه گاز آمکسیتوگرافی - طیف سنجی جرمی</th>
<th>Code: 25mx0.22mm ID BP10 0.25 Column capillary, Serial No:4792B09 P/N: 054253</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان همچنین</td>
<td>Mass</td>
</tr>
<tr>
<td>زمان‌های محلول تزریق نمونه</td>
<td>دمای محلول</td>
</tr>
<tr>
<td>1/2 دقیقه</td>
<td>180 ℃</td>
</tr>
</tbody>
</table>

\[\text{محله} \]

\[\text{اعتبار دانشگاه علوم پزشکی ایران} \]

\[\text{دوره} \]

\[\text{نوزدهم، شماره دوم، تابستان} 90 \]

\[\text{وهای} \]

\[\text{ف.} \]
نمودار 1. گرماتوگرام گلخانه بنزن، تولوئن، گزین (پارا، متا و اورتو) تریفی به دستگاه GC/MS.

در زیر نمودار های شماره ۲ تا ۵ منحنی استاندارد برای کلیه مواد مورد نظر در این تحقیق آورده شده است:

نمودار 2. منحنی استاندارد بنزن

نمودار 3. منحنی استاندارد تولوئن
نمودار ۴. منحنی استاندارد متوازن کریستال

نمودار ۵. منحنی استاندارد اورتو کریستال

ب) آماده سازی و تجزیه ی نمونه ها: بعد از جمع آوری تعداد ۱۸۰ نمونه در دو فصل زمستان و تابستان و انتقال آن به آزمایشگاه، با برداشت در بوش لاستیکی از سر لوله های جذب و برخی آن به وسیله دستگاه برش محتوای آن را در یک و بال خالی نیمه سیس با اضافه نمودن یک میلی‌لیتر از حلال دی سولفید کربن به آن عمل اکتیلا به مدت ۲۰ دقیقه انجام گردید. با تریق یک میکروپتر از محلول GC/MS و بال به دستگاه تنظیمات موجود در جدول ۱ عمل تجزیه انجام گردید. بررسی کروماتوگرام مربوط به مقدار سطح زیر پیک و رابطه به دست آمده از منحنی استاندارد(نمودارهای ۵-۲)، در نهایت محاسبات تمعین مقدار غلظت ترکیبات مذکور به وسیله رابطه (۴) انجام گردید:

$$C = \frac{W_f + W_b - B_f - B_b}{7}$$

رابطه (۴)

*W*۷* اصلی بر حسب μg *W*۷* اصلی بر حسب μg
استتشاقی کارکن در زمستان و تابستان(5/03–07/1 و به ترتیب دارای مقاومت 3/7 و 32 ppm می باشد. هم چنین نتایج نشان می دهد که غلظت تولوئن و گزین(ره سی سی ایوزم) از حدود تراکم مجاز استانداردها پایین تر بوده است.(جدول 3).

جدول 2. مقادیر حد تراکم مجاز اتیلن ها بر اساس دستورالعمل سازمان های ارائه دهند روش های نمونه برداری و تجزیه الانتهای ها (در سال 2009 میلادی)

<table>
<thead>
<tr>
<th></th>
<th>ITCOH</th>
<th>ACOIH</th>
</tr>
</thead>
<tbody>
<tr>
<td>اندازه</td>
<td>پنزن</td>
<td>تولوئن</td>
</tr>
<tr>
<td>باشند</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>شناسایی</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>مشاهده</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

نتایج حاصل از مقایسه میانگین غلظت الانتهای آبی در هواهای محیطی داخل بوده و این دو به طور محسوسی بیشتر از هواهای محیطی خارج وحد می باشد (جدول 2). برای شاینده، سطح خاک مایعات غلظت الانتهای مناسبی نشان می دهد که این میانگین غلظت بین در سه محل نمونه برداری در زمستان و تابستان با هم اختلاف معنی داری عری ندارند(0.5>P). هم چنین میانگین غلظت تولوئن در هواهای محیطی داخل واحد و هواهای منطقه تفسی کارکن و واحدها در زمستان و تابستان با هم اختلاف معنی داری ندارند(0.5>P). اما غلظت این الانتهای در هواهای محیطی خارج واحد در زمستان و تابستان اختلاف معنی داری وجود دارد(0.5>P) و میانگین غلظت در تابستان بیشتر از زمستان می باشد. هم چنین نتایج کوئیه آن است که میانگین غلظت تولوئن، پارا و پارا گزین در هواهای محیطی داخل و خارج واحدها در زمستان و تابستان با هم اختلاف معنی داری دارند(0.5>P) و میانگین غلظت در تابستان بیشتر از زمستان می باشد. هم چنین نتایج الانتهای آبی در هواهای منطقه تفسی کارکان و واحدها در زمستان و تابستان با هم اختلاف معنی داری ندارند(0.5>P).

بررسی فراوانی الانتهای ها در نمونه برداری اتگاگ گرفته در واحدهای پتروشیمی نشان می دهد که پارا و متاژکین در 82 درصد، تولوئن و اورتو گزین در 27 درصد و پنزن در 49 درصد نمونه ها شناسایی شده است. بررسی وضوح انتشار الانتهای ها نشان داد که بیشترین تراکم غلظت الانتهای های تولوئن، پارا و اورتو گزین در زمستان و تابستان در طرف جنوب میان و بیشترین میزان اندازه پنزن در طرف شمال شهر و بیشترین میزان اندازه قرار دارد. بررسی ها نشان داد که روی حداکثر تراکم غلظت الانتهای آبی در طرف شمال غرب و غرب منطقه قرار دارد.
جدول 3. مقایسه میانگین غلظت آلانده‌ها در هواهای محیطی داخل، خارج و هواهای منطقه‌تنسی کارکنان بندر ماهشهر در فصول زمستان 87 و تابستان 88

<table>
<thead>
<tr>
<th>P-value</th>
<th>انحراف معیار</th>
<th>میانگین (ppm)</th>
<th>فصل</th>
<th>نوع نمونه برداری</th>
<th>آلاینده</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/163</td>
<td>0/132</td>
<td>18</td>
<td>زمستان</td>
<td>هوا محیطی داخل واحد</td>
<td></td>
</tr>
<tr>
<td>0/18</td>
<td>1/28</td>
<td>18</td>
<td>تابستان</td>
<td>هوا محیطی داخل واحد</td>
<td></td>
</tr>
<tr>
<td>0/234</td>
<td>0/176</td>
<td>17</td>
<td>زمستان</td>
<td>هوا محیطی خارج واحد</td>
<td></td>
</tr>
<tr>
<td>0/167</td>
<td>0/128</td>
<td>17</td>
<td>تابستان</td>
<td>هوا محیطی خارج واحد</td>
<td></td>
</tr>
<tr>
<td>0/8/3</td>
<td>0/37</td>
<td>37</td>
<td>زمستان</td>
<td>هوا منطقه‌تنسی کارکنان</td>
<td></td>
</tr>
<tr>
<td>0/5/2</td>
<td>0/31</td>
<td>31</td>
<td>تابستان</td>
<td>هوا منطقه‌تنسی کارکنان</td>
<td></td>
</tr>
<tr>
<td>0/13</td>
<td>0/07</td>
<td>7</td>
<td>زمستان</td>
<td>تولوشن</td>
<td></td>
</tr>
<tr>
<td>0/13</td>
<td>0/09</td>
<td>9</td>
<td>تابستان</td>
<td>تولوشن</td>
<td></td>
</tr>
<tr>
<td>0/31</td>
<td>0/06</td>
<td>6</td>
<td>زمستان</td>
<td>یارا و منتگرین</td>
<td></td>
</tr>
<tr>
<td>0/31</td>
<td>0/06</td>
<td>6</td>
<td>تابستان</td>
<td>یارا و منتگرین</td>
<td></td>
</tr>
<tr>
<td>0/16</td>
<td>0/12</td>
<td>12</td>
<td>زمستان</td>
<td>اورتوکیلن</td>
<td></td>
</tr>
<tr>
<td>0/18</td>
<td>0/14</td>
<td>14</td>
<td>تابستان</td>
<td>اورتوکیلن</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4. مقایسه میانگین غلظت آلانده‌ها در هواهای محیطی داخل و خارج و یاده‌های تولیدی مجتمع پتروشیمی بندر ماهشهر به تفکیک فصول زمستان 87 و تابستان 88

<table>
<thead>
<tr>
<th>P-value</th>
<th>هوا محیطی خارج</th>
<th>هوا محیطی داخل</th>
<th>فصل</th>
<th>آلاینده</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/121</td>
<td>0/163</td>
<td>0/165</td>
<td>0/143</td>
<td>0/153</td>
</tr>
<tr>
<td>0/81</td>
<td>0/32</td>
<td>0/231</td>
<td>0/188</td>
<td>0/138</td>
</tr>
<tr>
<td>0/13</td>
<td>0/14</td>
<td>0/145</td>
<td>0/0</td>
<td>0/15</td>
</tr>
<tr>
<td>0/16</td>
<td>0/14</td>
<td>0/145</td>
<td>0/0</td>
<td>0/15</td>
</tr>
<tr>
<td>0/13</td>
<td>0/14</td>
<td>0/145</td>
<td>0/0</td>
<td>0/15</td>
</tr>
<tr>
<td>0/16</td>
<td>0/14</td>
<td>0/145</td>
<td>0/0</td>
<td>0/15</td>
</tr>
<tr>
<td>0/13</td>
<td>0/14</td>
<td>0/145</td>
<td>0/0</td>
<td>0/15</td>
</tr>
<tr>
<td>0/16</td>
<td>0/14</td>
<td>0/145</td>
<td>0/0</td>
<td>0/15</td>
</tr>
</tbody>
</table>
بحث و نتیجه گیری

با توجه به اهداف سازمان منطقه‌ای و بررسی اندیشه‌های اطراف این مقاله، تحقیقی در مبحث تحقیقات در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی هیدروکربن‌های منشأ محیطی موجود در منطقه توسط تحقیقاتی در پژوهش‌های محیطی دیگر که در زمینه ارزیابی H
References

3-Gunnar W. Urban flux measurements of energy and trace gases from a tall lattice tower near central Houston, TX. A report to the Texas Air Research Center (TARC), Lamar University TX, October 2007.

11-Federal Remediation Technologies Round Tabkle, editors. Common treatment technologies for non Halogenated VOCs in
Evaluation of Benzene, Toluene And p,m&o-Xylene Contaminants at Mahshahr Petrochemical Complex During 2008-9

Maghsoudi Moghadam R*, Bahrami A², Mahjoob H³, Ghorbani F²

(Received: 12 Jun. 2010 Accepted: 29 Jul. 2011)

Abstract

Introduction: Volatile Organic Compounds (VOCs) are from very important pollutants that cause some hazards for workers involved in oil and petrochemical industries. They also affect on the environment. The aim of this study was to assess and measure the Benzene, Toluene and Xylene(p,m&o) in the ambient air of Bandar Mahshahr Petrochemical Complex.

Materials and Methods: This research was a cross-sectional study. In order to measure the sample volume, we used results taken from primary evaluation, which was done in petrochemical units to determine Hydrocarbons concentration, through a similar research. In order to carry out the sampling and analyzing of pollutants, we used 1501 the method presented by National Institute of Occupational Safety and Health. A charcoal tube sampler connected to a pump was used for sampling air. Next, the compounds were extracted with solvent carbon disulfide and analyze of samples was achieved by gas chromatography- mass spectrometry (Model: CP-3800, CP-338) equipped with capillary columns. The data were analyzed by SPSS Ver. 17 software.

Findings: The results showed that Benzene concentration in the locations of sampling, in summer and winter were 34% and 13% respectively higher than the TLV-TWA Standard recommended by American Conference of Governmental Industrial Hygienists and Iran Technology Committee of Occupational Health Standards. Also, the results showed that there was a significance difference between the concentrations of pollutants in indoor environment, which was (0.111±0.285 & 0.271±0.502) for Toluene and (0.041±0.082 & 0.273±0.65) for p&m-Xylene and (0.016±0.033 & 0.11±0.253) ppm for o-Xylene in winter and summer respectively, (0.015±0.014 & 0.126±0.125) for Toluene and (0.0097±0.019 & 0.064±0.12) for p&m-Xylene and (0.003±0.005 & 0.019±0.02) ppm for o-Xylene in outdoor environment (P-value<0.05).The results also showed a insignificant difference between the concentrations of pollutants of Benzene at indoor, outdoor environmental air and respiration zones of staff of production in the winter and summer unites, (0.154±0.143 & 0.48±1.1 & 0.065±0.163 & 0.178±0.231 & 1.63±7.15 & 2±8.3) ppm (P-value>0.05).

Discussion & Conclusion: The evaluation of VOCs concentrations showed that the highest and lowest concentrations were in summer and winter respectively. The concentration increase in summer was due to evaporation increase of VOCs from temporary sources as a result of high temperature and density concentration up-gone mainly because of temperature increase and wind speed.

Keywords: volatile organic compounds, petrochemical, environmental air, gas chromatography

1. Dept of Occupational Health, Health School, Ilam University of Medical Sciences, Ilam, Iran (corresponding author)
2. Dept of Occupational Health, Health School, Hamadan University of Medical Sciences, Hamadan, Iran
3. Dept of Epidemiology & Statistics, Health School, Hamadan University of Medical Sciences, Hamadan, Iran