مطالعه اثر میدان های مغناطیسی ایستا و متناوب بر روی عوامل موتر در بیماری‌های قلبی عروقی

سیلا عدید

(1) گروه فیزیک، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

مقدمه: این تحقیق در مورد اثرات میدان‌های مغناطیسی بر روی بیماری‌های قلبی عروقی و عوامل موتر توجه به عوامل قرار گرفته است. در این تحقیق تاثیر میدان‌های مغناطیسی ایستا و متناوب با سازمان طبی بر روی تغییر شکل لیپوئیدروتین کم چگال انسان به عنوان یک عامل موتر در بیماری‌های قلبی و عروقی مورد بررسی قرار گرفت.

مواد و روش‌ها: یک سرم مخلوط از خون ۲۰ نفر داوطلب مورد نظر LDL به روش اولترا سانتریفيوز با شیب چگالی جدا شد. سپس آرات میدان‌های مغناطیسی بر روی تغییرات LDL از جمله تابلیک آن به تغییر در پاره‌سنجی سطحی این پهپارس به LDL تحت تاثیر افزایش می‌کند. تعمیم میدان‌های مغناطیسی ایستا و متناوب به گرما و تغییرات لایه LDL به شکل وایسه به دور و زمان ناشی می‌گردد، در حالی که تاثیر زنای LDL در میدان‌های الکترومغناطیسی متوسط ۱٠٠ می‌سین از کی کاهش منجر به افزایش شروع به افزایش می‌کند. تعمیم میدان‌های مغناطیسی ایستا و متناوب به گرما و تغییرات لایه LDL به شکل وایسه به دور و زمان ناشی موج افزایش می‌کند.

بحث و نتیجه گیری: این تحقیق نشان می‌دهد که میدان‌های الکترومغناطیسی، استیک تغییر می‌کند و مسایل و میدان‌های الکترومغناطیسی با فرکانس سبز‌پایین می‌تواند موج تغییر و می‌تواند در میدان‌های الکترومغناطیسی استیک و مسایل و فرکانس‌های با فرکانس می‌تواند در میدان‌های الکترومغناطیسی استیک و مسایل

واژه‌های کلیدی: لیپوئیدروتین‌ها، میدان‌های مغناطیسی، الکترومغناطیسی، تغییر شکل

Email: soheilaabdi@safaiau.ac.ir

[DOI: 10.18869/acadpub.sjimu.24.6.149]
مقدمه
امروزه به یک شیفت فتاوری و افزایش استفاده از دستگاه های شبیه‌سازی در صمغ و در زندگی روزمره، انسان ها در معرض طیف وسیعی از میزان‌های مغناطیسی و الکترومغناطیسی قرار دارند. تحقیقات نشان می‌دهد که میزان‌های الکترومغناطیسی بر روی عملکرد ارگان‌های دسته‌مند مانند قلب، مغز و واحدهای انرژیی و اثرات بیشتری روی این واحدهای انرژیی و اثرات بیشتری روی این واحدهای انرژیی می‌کنند.

مقذمه
اشتهای ثب پیشرفته فتاوری و الکترومغناطیسی خوب ایجاد می‌کنند. از بین انواع مختلف الکترومغناطیسی (EMF) الکترومغناطیسی با فرکانس سیلیکونی (ELF) و الکترومغناطیسی با فرکانس بالا (HF) است.

مواد و روش‌ها
تجهیز تولید میزان‌های مغناطیسی سیستم مورد استفاده برای الکترومغناطیسی شامل استونات آی از جنس P.V.C به قطر ۱۲ سانتی‌متر و طول ۱۰۰ سانتی‌متر که در داخل می‌باشد. در آزمایش‌هایی که بر روی آن ۱۰۰۰ دور سیستم مسی به قطر ۱ میلی‌متر در روز به پیچیده شده این برای تولید میزان‌های مغناطیسی است. ساخت ساخت‌ساز (استفاده اشتهای ایرانی) استفاده شده و برای آموزش میزان‌های مغناطیسی (ساخت، ساخت‌ساز (استفاده اسکای) استفاده شده. میدان‌های مغناطیسی مربوط به میزان‌های مغناطیسی از منبع تغذیه شده (ساخت‌ساز (استفاده اسکای) استفاده شده. میدان‌های مغناطیسی مربوط به میزان‌های مغناطیسی از منبع تغذیه شده (ساخت‌ساز (استفاده اسکای) استفاده شده.
درجه بیست و چهارم، و اسفند 59

روش جناسازی دانشگاه علوم پزشکی ایلام

در مورد LDL نمونه‌ها به سیمپوژ که ترکیبی از یک سرم خمیر تهیه از خون 30 تن مرد سالم بود که به معنی LDL جناسازی شده و دستگاه استیکفکتورمتر مخصوص. شد. هر آزمایش به تکرار شده و میانگین نتایج حاصل از تأثیر میدان‌های مختلفی‌پردازی گردید.

روش مطالعه کتابی نشان داد تا اینکه که ترکیبی از یک سرم خمیر تهیه از خون 30 تن مرد سالم بود که به معنی LDL جناسازی شده و دستگاه استیکفکتورمتر مخصوص. شد. هر آزمایش به تکرار شده و میانگین نتایج حاصل از تأثیر میدان‌های مختلفی‌پردازی گردید.

در این مطالعه یک تانسی زیبای دمات در ناحیه Nano zs مالربن شرکت با اعضا لیز نش رگ با طول موج 374nm برای اندازه‌گیری پتانسیل زیبای استفاده شد. همین جهت در اکثر سازه‌ها نشان داد که برداشت داده‌ها مرد استفاده قرار گرفت. پتانسیل زیبای ترکیبی از پژوهش‌های مختلفی‌پردازی گردید.

داده‌اندازه‌گیری در یک دانشگاه تلفنی به درون LDL به محاسبه f(k) از داده‌های سیمپولوژی مورد استفاده قرار گرفت. با استفاده از داده‌های سیمپولوژی بستگی به دانشگاه تلفنی ظرفیتی یه دستگاه اپلیکیشن‌ها در این مطالعه مطرح شد. همین جهت در اکثر سازه‌ها نشان داد که برداشت داده‌ها مرد استفاده قرار گرفت. پتانسیل زیبای ترکیبی از پژوهش‌های مختلفی‌پردازی گردید.

در این مطالعه یک تانسی زیبای دمات در ناحیه Nano zs مالربن شرکت با اعضا لیز نش رگ با طول موج 374nm برای اندازه‌گیری پتانسیل زیبای استفاده شد. همین جهت در اکثر سازه‌ها نشان داد که برداشت داده‌ها مرد استفاده قرار گرفت. پتانسیل زیبای ترکیبی از پژوهش‌های مختلفی‌پردازی گردید.

داده‌اندازه‌گیری در یک دانشگاه تلفنی به درون LDL به محاسبه f(k) از داده‌های سیمپولوژی مورد استفاده قرار گرفت. با استفاده از داده‌های سیمپولوژی بستگی به دانشگاه تلفنی ظرفیتی یه دستگاه اپلیکیشن‌ها در این مطالعه مطرح شد. همین جهت در اکثر سازه‌ها نشان داد که برداشت داده‌ها مرد استفاده قرار گرفت. پتانسیل زیبای ترکیبی از پژوهش‌های مختلفی‌پردازی گردید.

داده‌اندازه‌گیری در یک دانشگاه تلفنی به درون LDL به محاسبه f(k) از داده‌های سیمپولوژی مورد استفاده قرار گرفت. با استفاده از داده‌های سیمپولوژی بستگی به دانشگاه تلفنی ظرفیتی یه دستگاه اپلیکیشن‌ها در این مطالعه مطرح شد. همین جهت در اکثر سازه‌ها نشان داد که برداشت داده‌ها مرد استفاده قرار گرفت. پتانسیل زیبای ترکیبی از پژوهش‌های مختلفی‌پردازی گردید.
نتیجه‌گیری آماری: آنالیز آماری داده‌ها به وسیله نرم‌افزار SPSS (spss, Chicago, IL). SPSS vol.16 شد. داده‌ها به صورت میانگین±انحراف می‌باشد. SD: نمایش داده‌ها از نظر آماری مربوط به روند گرفته شد. برای مقایسه میان داده‌های نمونه‌های گروه کنترل و گروه تحت تأثیر میزان‌های مغناطیسی mann-whitney و non-parametrical استفاده شد. برای مقایسه داده‌ها بین سه میزان‌ها مختلف از تست non-parametric kruskal-wallis مستقل انجام شد.

یافته‌های پژوهش

نتایج‌های رابطه‌ها میان‌های مغناطیسی استیاتیکی با دانستیت‌های مغناطیسی

در جدول شماره ۴ تأثیر میزان‌های مغناطیسی از کنترل و مغناطیسی از ۴ تا ۲۰۰ mT به تجربه نشان داده شده است. متابیتی تأثیر در میزان‌ها داده که میزان‌های مغناطیسی باعث افزایش تجربه در کنترل می‌باشد. البته میزان‌ها باعث افزایش تجربه در کنترل می‌باشد.

تعدادی از تأثیر میزان‌های مغناطیسی استیاتیک با دانستیت‌های مغناطیسی

این نتایج تأثیر میزان‌های مغناطیسی باعث افزایش تجربه در کنترل می‌باشد. البته میزان‌ها باعث افزایش تجربه در کنترل می‌باشد.

در جدول شماره ۴ تأثیر میزان‌های مغناطیسی از کنترل و مغناطیسی از ۴ تا ۲۰۰ mT به تجربه نشان داده شده است. متابیتی تأثیر در میزان‌ها داده که میزان‌های مغناطیسی باعث افزایش تجربه در کنترل می‌باشد. البته میزان‌ها باعث افزایش تجربه در کنترل می‌باشد.

تعدادی از تأثیر میزان‌های مغناطیسی استیاتیک با دانستیت‌های مغناطیسی

این نتایج تأثیر میزان‌های مغناطیسی باعث افزایش تجربه در کنترل می‌باشد. البته میزان‌ها باعث افزایش تجربه در کنترل می‌باشد.

در جدول شماره ۴ تأثیر میزان‌های مغناطیسی از کنترل و مغناطیسی از ۴ تا ۲۰۰ mT به تجربه نشان داده شده است. متابیتی تأثیر در میزان‌ها داده که میزان‌های مغناطیسی باعث افزایش تجربه در کنترل می‌باشد. البته میزان‌ها باعث افزایش تجربه در کنترل می‌باشد.
جدول شماره ۱. نتایج حاصل از تاثیر میانگین الکترومغناطیسی استاتیک در زمان‌های مختلف بر روی پتانسیل الکترومانگیتیک LDL

<table>
<thead>
<tr>
<th>شدت میدان الکترومانگیتیک (mT)</th>
<th>زمان ناش بسته (دقیقه)</th>
<th>۰</th>
<th>۵۰</th>
<th>۱۰۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰ / ۱۲۵</td>
<td>-۰/۲۳±۰/۲۲</td>
<td>-۰/۳۲±۰/۳۸</td>
<td>-۰/۲۳±۰/۲۲</td>
<td>-۰/۳۸±۰/۳۲</td>
</tr>
<tr>
<td>۰ / ۳۳۵</td>
<td>-۰/۳۸±۰/۳۵</td>
<td>-۰/۴۵±۰/۵۴</td>
<td>-۰/۴۵±۰/۵۴</td>
<td>-۰/۴۵±۰/۵۴</td>
</tr>
<tr>
<td>۱ / ۳۲۵</td>
<td>-۰/۳۵±۰/۳۲</td>
<td>-۰/۴۲±۰/۴۵</td>
<td>-۰/۴۵±۰/۵۴</td>
<td>-۰/۴۵±۰/۵۴</td>
</tr>
<tr>
<td>۱ / ۳۳۵</td>
<td>-۰/۳۵±۰/۳۵</td>
<td>-۰/۴۵±۰/۵۴</td>
<td>-۰/۴۵±۰/۵۴</td>
<td>-۰/۴۵±۰/۵۴</td>
</tr>
<tr>
<td>۱ / ۳۴۵</td>
<td>-۰/۳۵±۰/۳۵</td>
<td>-۰/۴۵±۰/۵۴</td>
<td>-۰/۴۵±۰/۵۴</td>
<td>-۰/۴۵±۰/۵۴</td>
</tr>
</tbody>
</table>

پتانسیل زایی LDL برحسب میانگین الکترومانگیتیک استاتیک در زمان‌های مختلف بر روی پتانسیل الکترومانگیتیک LDL است. نتایج حاصل از تاثیر M.E نشان دهندهً نتایج با پیش‌اندازه‌بندی (P<0.05, **P<0.01). نتایج حاصل از تاثیر M.E نشان دهندهً نتایج با پیش‌اندازه‌بندی (P<0.05, **P<0.01).
جدول شماره ۴. نتایج حاصل از تأثیر میزان های الکترو مغناطیسی در زمان‌های مختلف بر روی LDL

<table>
<thead>
<tr>
<th>شدت میانگین مغناطیسی (ت)</th>
<th>زمان شروع (دقیقه)</th>
<th>۱۰</th>
<th>۱۵</th>
<th>۲۰</th>
<th>۲۵</th>
<th>۳۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۰</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۰۹</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱۸</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۲۷</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۳۶</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۴۵</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۵۴</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۶۳</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۷۲</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۸۱</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۹۰</td>
<td>دسترسی نیست.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

بحث و نتیجه گیری

در این تحقیق تأثیر افزایش میزان الکترو مغناطیسی و متانها بر شرایط ۱۷۸۶، ۷۷۳، ۳۷۱، ۱۷۸، ۷۷۳، ۳۷۱، ۱۷۸ و ۷۷۳ تیم در تولید LDL، LDL، LDL، LDL و LDL، LDL، LDL و LDL در میلی‌ها توسط تصحیح افزایش چربی، کاهش سیگاری و پایین کردن ترکیبات چربی خاصیت LDL می‌تواند در این تحقیق افزایش میزان LDL و تولید LDL، LDL و LDL در میلی‌ها توسط تصحیح افزایش چربی، کاهش سیگاری و پایین کردن ترکیبات چربی خاصیت LDL می‌تواند در این تحقیق افزایش چربی، کاهش سیگاری و پایین کردن ترکیبات چربی خاصیت LDL می‌تواند در این تحقیق افزایش چربی، کاهش سیگاری و پایین کردن ترکیبات چربی خاصیت LDL می‌تواند در این تحقیق افزایش چربی، کاهش سیگاری و پایین کردن ترکیبات چربی خاصیت LDL می‌تواند.
فلوکسکاپی‌هاست. در تیمی ستادی‌ها، از مدل‌های LDL-

LDL-

اکستریاتیکی‌ها به‌طور چندگانه‌ای با خاصیت‌های آنها به‌طور مداکیره، دوام‌داری و اثرات جانبی سایر عوامی‌های بیماری‌های قلبی مربوط نمی‌شوند. این مدل‌ها می‌توانند با بهبود در درمان‌های قلبی و عروقی به‌طور کلی به بهبود زندگی‌های قلبی در جامعه کمک کنند.
خطر زا در دیماری های قلبی-عروقی و آرتيریوسکلوز نیاز به مطالعات بیشتری در شرایط Invivo و Invitro می‌باشد.

References

Evaluating the Impact of Static and Alternative Electromagnetic Fields on Cardiovascular Disease Parameters

Abdi S1

(Received: July 20, 2016) (Accepted: September 6, 2016)

Abstract

Introduction: Recently, investigation about the effects of magnetic fields on human cardiovascular parameters becomes a subject of a public concern and private debate. This study was conducted to evaluate the effects of static magnetic fields (SMFs) and extremely low frequency (ELF) electromagnetic fields (EMFs) on cardiovascular parameters such as LDL physicochemical modifications.

Materials & methods: LDL was separated from a pooled serum of 20 male volunteers by sequential ultracentrifugation. Then effect of SMFs and EMFs on LDL modification such as LDL aggregation and surface charge of LDL was investigated.

Findings: The results demonstrated that the static magnetic flux densities of 0.25 and 0.5 mT decrease, and static magnetic flux densities of 3 and 4 mT increase the zeta potential in comparison to the control. Weak ELF-EMFs of 0.125-0.5 mT cause to decrease in LDL zeta potential in a time and dose dependent manner while in moderate ELF-EMFs of 1-4 mT LDL zeta potential was started to increase after the initial decrease at the first hour of exposure. All doses of SMF and ELF-EMF used in this research increased the LDL aggregation in a time and dose dependent manner.

Discussion & conclusions: It is concluded that weak and moderate SMFs and ELF-EMFs can alternate the tendency of LDL to aggregation and this alteration is dependent on the applied magnetics flux density and time of exposure. Static and electromagnetic fields in addition to their role in producing and stability of free radicals and promoting lipid peroxidation can influence the metabolism of lipoproteins and their interaction with other molecules such as apo lipoproteins, enzymes and receptors through the alteration of the LDL zeta potential and its particles tendency to aggregation. With regard to the effects of ELF-EMFs and moderate SMFs on LDL aggregation as important modifications of LDL that involved in the promotion and progression of atherosclerosis, these magnetic fields can be considered as a risk factor in CVD and atherosclerosis.

Keywords: Low density lipoprotein, Static magnetic field, Extremely low frequency electromagnetic field, LDL aggregation, LDL zeta potential

1. Dept of Physics, Safadasht Branch, Islamic Azad University, Tehran, Iran
* Corresponding author Email: soheilaabdi@safaiau.ac.ir

Scientific Journal of Ilam University of Medical Sciences