بررسی اثر آگوئستریک یاپاوئین بر فرازیدن گلابیکه شدن آلبومین سرم انسانی

چکیده

مقدمه: گلابیکه شدن یک واکنش غیر آنزیمی است که با واکنش قند با گروه‌های آمین پروتئین شروع می‌شود. در مرحله اولیه گلابیکه شدن سنست ترکیبات حد واسطه آماده‌ریزی می‌دهد و در مرحله پایانی با یک سلسله واکنش‌های یپچیده برگشت ناپذیر محصولات پیشبرده گلابیکه شدن (AGE) ایجاد می‌گردد. گلابیکه شدن اختلالات مرتبی با دیابت، بی‌پروپلانژیک و آلزایمر را تحت تاثیر قرار می‌دهد.

مواد و روش‌ها: در این مطالعه آلبومین سرم انسان همراه با گلوزک و در حضور غلظت‌های مختلف یاپاوئین به مدت ۴۲ روز در دمای ۳۷° تابه شد. هم چنین گلابیکه تحت شرایط آزمایشی شد. سپس نمونه‌ها با دو رنگ نمایی دورانی، فلوسنس و استگنوسکوپی بررسی شد.

یافته‌های پژوهش: گلابیکه شدن آلبومین سرم با افزایش غلظت یاپاوئین بیشتر می‌شود. نمونه‌های دارای یاپاوئین تغییرات بیشتری در ساختار دوم، فلوسنس وابسته به محصولات AGE و تعداد لیزین آزاد نسبت به نمونه گلابیکه و کنترل نشان می‌دهد.

بحث و ترتیب‌گیری: در گلابیکه مارکر آفرا و صفحات پتا به ترتیب ۲/۵ درصد کاهش و ۳/۱ درصد افزایش نسبت به کنترل نشان می‌دهد. گلابیکه ۱۴/۲ درصد فلوسنس بیشتر نسبت به کنترل نشان می‌دهد. تعداد لیزین آزاد گلابیکه ۸ درصد نسبت به کنترل کاهش نشان می‌دهد. در نمونه‌های دارای یاپاوئین تمامی این موارد بیشتر تغییر می‌کند. تغییر جذب آلبومین در حضور یاپاوئین نشان می‌دهد که پاپاوئین سبب شده لیزین های بیشتری با فردیت می‌باشد و گلابیکه شدن افزایش یافته.

واژه‌های کلیدی: گلابیکه شدن، آلبومین سرم انسانی، یاپاوئین

Email: aahmadzadeh20@yahoo.com
مقدمه

بررسی اثر آگونیست‌های پاپاوارین بر فعالیت ریاکیی گلیکوژن شدن آلیپونیوم سرم انسانی. گلیکوژن‌سازی و ریاکیی - گلیکوژن‌سازی

نتایج

-way,

رژیم غذایی و فعالیت‌های ورزشی برابر بودند. گروه B به گروه A نسبت به هریچه ورزش نسبت به هریچه ورزش

در این گروه دوگانه گلیکوژن شدن آلیپونیوم سرم انسانی نشان داد. این نتایج نشان می‌دهد که افزایش فعالیت‌های ورزشی نسبت به افزایش مصرف کالری، کاهش افزایش گلیکوژن شدن آلیپونیوم سرم انسانی را نشان می‌دهد.

با این حال، به‌طور کلی، گروه B به گروه A نسبت به هریچه ورزش نسبت به هریچه ورزش

مرحله نهایی گلیکوژن شدن محصولات اماده‌ای به

شکل آمایش و برگشت ناپایه طی یک سلسله واکنش‌های پیچیده محصولات نهایی گلیکوژن شدن

به‌طور کلی، گروه B به گروه A نسبت به هریچه ورزش نسبت به هریچه ورزش

در این گروه دوگانه گلیکوژن شدن آلیپونیوم سرم انسانی نشان داد. این نتایج نشان می‌دهد که افزایش فعالیت‌های ورزشی نسبت به افزایش مصرف کالری، کاهش افزایش گلیکوژن شدن آلیپونیوم سرم انسانی را نشان می‌دهد.

با این حال، به‌طور کلی، گروه B به گروه A نسبت به هریچه ورزش نسبت به هریچه ورزش

در این گروه دوگانه گلیکوژن شدن آلیپونیوم سرم انسانی نشان داد. این نتایج نشان می‌دهد که افزایش فعالیت‌های ورزشی نسبت به افزایش مصرف کالری، کاهش افزایش گلیکوژن شدن آلیپونیوم سرم انسانی را نشان می‌دهد.

با این حال، به‌طور کلی، گروه B به گروه A نسبت به هریچه ورزش نسبت به هریچه ورزش

در این گروه دوگانه گلیکوژن شدن آلیپونیوم سرم انسانی نشان داد. این نتایج نشان می‌دهد که افزایش فعالیت‌های ورزشی نسبت به افزایش مصرف کالری، کاهش افزایش گلیکوژن شدن آلیپونیوم سرم انسانی را نشان می‌دهد.

با این حال، به‌طور کلی، گروه B به گروه A نسبت به هریچه ورزش نسبت به هریچه ورزش

در این گروه دوگانه گلیکوژن شدن آلیپونیوم سرم انسانی نشان داد. این نتایج نشان می‌دهد که افزایش فعالیت‌های ورزشی نسبت به افزایش مصرف کالری، کاهش افزایش گلیکوژن شدن آلیپونیوم سرم انسانی را نشان می‌دهد.

با این حال، به‌طور کلی، گروه B به گروه A نسبت به هریچه ورزش نسبت به هریچه ورزش

در این گروه دوگانه گلیکوژن شدن آلیپونیوم سرم انسانی نشان داد. این نتایج نشان می‌دهد که افزایش فعالیت‌های ورزشی نسبت به افزایش مصرف کالری، کاهش افزایش گلیکوژن شدن آلیپونیوم سرم انسانی را نشان می‌دهد.

با این حال، به‌طور کلی، گروه B به گروه A نسبت به هریچه ورزش نسبت به هریچه ورزش

در این گروه دوگانه گلیکوژن شدن آلیپونیوم سرم انسانی نشان داد. این نتایج نشان می‌دهد که افزایش فعالیت‌های ورزشی نسبت به افزایش مصرف کالری، کاهش افزایش گلیکوژن شدن آلیپونیوم سرم انسانی را نشان می‌دهد.

با این حال، به‌طور کلی، گروه B به گروه A نسبت به هریچه ورزش نسبت به هریچه ورزش

در این گروه دوگانه گلیکوژن شدن آلیپونیوم سرم انسانی نشان داد. این نتایج نشان می‌دهد که افزایش فعالیت‌های ورزشی نسبت به افزایش مصرف کالری، کاهش افزایش گلیکوژن شدن آلیپونیوم سرم انسانی را نشان می‌دهد.

با این حال، به‌طور کلی، گروه B به گروه A نسبت به هریچه ورزش نسبت به هریچه ورزش

در این گروه دوگانه گلیکوژن شدن آلیپونیوم سرم انسانی نشان داد. این نتایج نشان می‌دهد که افزایش فعالیت‌های ورزشی نسبت به افزایش مصرف کالری، کاهش افزایش گلیکوژن شدن آلیپونیوم سرم انسانی را نشان می‌دهد.
که نتیجه واکنش TNBS با گروه آمین آزاد است با
دشتاهای اسکوکرون (قرات شد.) با توجه به
جبذ نمونه کنتل که تمام آمین های آزاد مربوط به
لیزی در آن با TNBS واکنش می دهد و با توجه به
این که الیومین سرم دارای گروه آمین مربوط به
لیزی است و بر اساس جنب دیگر نمونه ها با یک
تناسب میزان گروه های آمین آزاد در
نمونه های درگیر محسوسه شده است. هم
چنین با کمک دسته اسکوکرون متر
اثر غلظت های 1.25،100،250،1000µM به تنهایی بر
آلیومین سرم (1 میلی گرم در یک میلی لیتر) در بیاف
سفارت 50 میلی‌مولار در طول موج 600 تا 700 نانومتر مطالعه شده است. همچنین اثر پاپارین بر روی
آلیومین نیز رابطه دورانی مورد بررسی قرار
گرفته. نتایج حاصل از انواع مورد بررسی (Excel)
برای حلیل بیشتر مورد ارزیابی قرار گرفته.

یافته‌های پژوهش
بررسی اسکوکرون می‌تواند تأثیری در حضور این
ماده منفی در ۲۰۰ و ۲۲۱ نانومتری را در
نمونه کنتل نشان نماید که نشان دهنده ماریج آقا
است برای نمونه گلاکیشه این کمیتی مثبت کاهش
نشان می‌دهد که نشان دهنده کاهش ماریج آقا و
افرازه‌سنج را نشان می‌دهد. در نمونه های کنترل
برگلک‌یک پاپارین نیز حضور در این نمونه ها
منفی بیشتر کاهش یافته است آنچه برای
ماریج آقا بیشتر کاهش می‌یابد. جدول شماره ۱
میزان ماریج آقا و صفحات بنا نمونه‌های مختلف به
دست آمده از دستگاه‌های دو رنگ نمایی دورانی را
نشان می‌دهد همان طور که در جدول ۱ دیده
می‌شود نمونه کنتل کاهش یافته است.
۶ درصد نسبت به کنترل داشته و نشان می‌دهد
در عوض در نمونه گلاکیشه صفحات بنا ۶۱ درصد
نسبت به کنترل افزایش می‌یابد. در
نمونه هایی که پاپارین حضور دارد این تغییرات
بیشتر است.

پایه‌های با زه‌بند

پاوآورین (۱۲۴ روز) (۱۰ محصول زمان لازم برای ریخت
گلاکیسه) در ویال و در دمای ۳۷ درجه سانتی‌گراد
شنیده می‌چین خمیر جدارین الیومین سرم انسانی بود.
به‌طور کلی نمونه‌های بیشتر در نمونه دیدری
همراه با گلیکوز ۴۰ میلی‌مولار از عوامل نمونه گلاکیسه
تحت حساسیت شرایط تهیه کرد. پس از ۴۲ روز
تنظیم‌های دریافت سرب دیاژن و در دمای
۴۰ درجه سانتی‌گراد شنید. سپس نمونه‌ها با کمک تست
بیسیکوتین اسید تغییرات داشتند (۱۶) روش بر پایه
توانایی این ماده در تشکیل میکلکس‌ها یا پیوند بینی
است که یک محصول به‌ورق را تولید می‌کند که
۴۵ درصد حاکم جذب کرده است. برای غلظت‌های
مشخصی پروتئین جذب در حضور این ماده را انسازه
می‌گیرد و جنب نمونه محصول در حضور این ماده را
هم می‌آورند به گونه بی‌تاسیس غلظت مجهول تا
حسابی که می‌تواند این گروه یک مورد (۱۶) (رجل ماده).

برای اتصال ماریج آقا و افزایش سازگاری با
دی‌بال گلاکیسه یا دو رنگ نمایی دورانی (CD)
برای اندوز گری تغییرات ساختر دوم آلیومین
سرم (۱۰ میلی‌گرم در یک میلی لیتر) با استفاده از
سته‌گاه Aviv-۲۵۳ و در طول موج ۱۹۰-۴۰۰ نانومتری استفاده شد سپس مقدار ساختن دوم
cDNA محاسبه گردید (۱۶). با
توجه به ایجاد خاصیت فلورسانس در نتیجه تشکیل
محصولات نهایی گلاکیسه این ایجاد فلورسانس در
همه نمونه‌ها (۱ میلی‌گرم در یک میلی لیتر) با استفاده
در طول موج Cary Eclipse فلورسانس

تحکیمی-شری (۲۹۰-۵۰۰ نانومتر اندوزه گیری
شده) ساخته گلاکیسه رضوه های ایمن مربوط
به لزیج آزاد را به همراه دارد. برای تحتین گروه های
امین مربوط به ریشه ایزین بکرین هیدروژن
۱۷ (۷ و ۸) TNBS و در
سیدی‌های سولفات و اسید پلر دریکی ۱ نرمابه
نمونه‌هایها (۱ میلی‌گرم در یک میلی لیتر) اضافه شد
و بعد از یک ساعت جذب نمونه‌ها در ۲۵۰ نانومتری
جدول شماره 1. میزان آلفا هیلکس و صفحات بتا نمونه ها به شکل (رفع کنید).

<table>
<thead>
<tr>
<th>Samples</th>
<th>αHelaix%</th>
<th>β sheet%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con</td>
<td>33.5</td>
<td>11.7</td>
</tr>
<tr>
<td>Gly</td>
<td>37.9</td>
<td>17.8</td>
</tr>
<tr>
<td>Gly+P25</td>
<td>36.4</td>
<td>15.7</td>
</tr>
<tr>
<td>Gly+P100</td>
<td>36.2</td>
<td>15.9</td>
</tr>
<tr>
<td>Gly+P250</td>
<td>35.4</td>
<td>15.2</td>
</tr>
<tr>
<td>Gly+P500</td>
<td>35.1</td>
<td>14.5</td>
</tr>
</tbody>
</table>

CD experiment

شکل شماره 1. استرکوم دو رنگ نمایی دورانی نمونه ها در بافر فسفات pH 7.4, 50 mM. البومین + گلوکز + پایویزین (25 µM) کنترل (کلایکه)، Gly, Gly+P25, Gly+P100, Gly+P250, Gly+P500, البومین + بایویزین + گلوکز (100 µM). البومین + البومین + گلوکز + پایویزین + غلولز + پایویزین (500µΜ) Gly+P500, Gly+P100, Gly+P250, Gly+P25, Gly+P100, Gly, Con

فلورسانس نسبت به نمونه کلایکه بیشتر افزایش نشان می‌دهد. همانطور که در شکل شماره 2 دیده می‌شود نمونه کلایکه 14/2 درصد نسبت به کنترل افزایش فلورسانس دارد در نمونه هایی که پایویزین حضور دارد فلورسانس بیشتر افزایش می‌یابد.

شکل شماره 2 میزان تولید فلورسانس وابسته به محصولات نهایی کلایکه شدن را نشان می‌دهد. کلایکه شدن شدت فلورسانس وابسته به محصولات نهایی کلایکه شدن را زیاد می‌کند در نمونه هایی که علاوه بر گلوکز، پایویزین هم حضور دارد شدت...
شکل شماره ۲. دو روش فلورسانس وابسته به محتوای نهایی گلابیکه شدن نمونه‌ها به شکل (رچ توکیه کردن).

شکل شماره ۳. درصد فلورسانس نمونه‌ها که مکورمیم آن در ۴۳۰ نانومتر است (به شکل ۱ مراجعه شود).

دارد میزان جذب نمونه‌های همراه با پائلوپین نسبت به نمونه گلابیکه کاهش پیشتار دارد. جدول ۲ هم میزان آمین آزاد مربوط به لزیز نمی‌شود. نشان می‌دهد همان طور که در شکل شماره ۵ دیده می‌شود تعداد گروه آمین مربوط به لزیز در نمونه گلابیکه ۸ درصد نسبت به کنترل کاهش نشان می‌دهد. در نمونه‌های همراه با پائلوپین این کاهش پیشتار است. در حضور TNBS با همه آنها واکنش داده است. با واکنش TNBS می‌شود نمونه کنترل پیشتار جذب را دارد. چون تمام گروه‌های آمین مربوط به لزیز در آن آزاد می‌باشد نشان می‌دهد همان طور که در شکل شماره ۲ هم می‌شود تعداد گروه آمین مربوط به لزیز در نمونه گلابیکه ۸ درصد نسبت به کنترل کاهش نشان می‌دهد. در نمونه‌های همراه با پائلوپین این کاهش پیشتار است.
جردل شماره ۲: تعداد گروه امین آزاد مربوط به ریشه لیزیز (به شکل ۱ روجه کبد).

<table>
<thead>
<tr>
<th>samples</th>
<th>Number free lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con</td>
<td>58</td>
</tr>
<tr>
<td>Gly</td>
<td>53</td>
</tr>
<tr>
<td>Gly+P25µM</td>
<td>52</td>
</tr>
<tr>
<td>Gly+P100µM</td>
<td>38</td>
</tr>
<tr>
<td>Gly+P250µM</td>
<td>27</td>
</tr>
<tr>
<td>Gly+P500µM</td>
<td>25</td>
</tr>
</tbody>
</table>

شکل شماره ۵. درصد گروه امین آزاد مربوط به ریشه لیزیز نمونه ها (به شکل ۱ روجه کبد).

است. چنین چنین در این طول موج نتیجه حضور اسید آمینه اروماتیک به ویژه ترتیفونی می باشد و تغییر در جذب ۲۸۰ نانومتر نشان دهنده تغییر در موقعیت این اسید آمینه می باشد(در بررسی تغییر جذب آلومین در حضور شکل شماره ۶ اثر غلظت های مختلف پاپاورین به تهدی بر آلومین سرم انسانی را نشان می دهد. این شکل نشان می دهد که پاپاورین چسب در نانومتری آلومین را با افزایش غلظت خود کم کرده.)
پاپاورین برای حذف جذب پاپاورین دستگاه را با انیلک کردنی. شکل پسونه 7، ذکر شماره 7، طیف دو رنگ تمایزی‌الپاورین در حضور پاپاورین را نشان می‌دهد. این شکل نشان می‌دهد غلظت‌های مختلف پاپاورین در میزان آلفا هیلکس و صفحات بتا که از اجزا ساختار دوم اند نسبت به کنترل تغییراتی ایجاد نکرده است.

شکل شماره 6. تاثیر غلظت‌های مختلف پاپاورین بر جذب 280 نانومتری الپاورین سرم (الپاورین، P100، الپاورین، P25، الپاورین، P100، الپاورین، P250، الپاورین، P500)- P100، الپاورین، P25، الپاورین، P100، الپاورین، P250، الپاورین، P500

شکل شماره 7. طیف دو رنگ نمایی الپاورین در حضور غلظت‌های مختلف پاپاورین (به شکل 7 رجوع کنید)
بحث و نتیجه گیری

مهم ترین هدف این مقاله به دست آوردن شواهدی برای انتخاب آگونیست‌های پاپاوارین بر فرازین گلایکه شدن آلبومین سرما سانسای بود که این شواهد با مطالعات دو رنگ نمایی دورانی فلورسنس وابسته به تولید محصولات نهایی گلایکه شدن بررسی می‌شاند. آمین آز مربوط به لیزین و طیف سنگین فا نبض حاصل شد. گلایکه شدن با کاهش میزان ماریکین آلفا و افزایش سطح آنتی‌هایم آنتی‌هایم است(11,12). همانطور که در شکل شماره ۱ دیده می‌شود کمیت‌های ۱ و
پایاپورین و وضعیت این ریشه‌ها در آلبومین تحت تاثیر قرار گرفتن به عبارت دیگر پایاپورین به نحوی بر ساختار آلبومین اثر گذاشته است که اثری جاده که در پایاپورین ساختار دوم پروتئین انتقایی نداشته است. بر اساس شکل شماره ۷ می‌توان گفت پایاپورین ساختار دوم پروتئین(شامل آلبومین هیپک و صفحات بتا) که از اجرا ساختمان دوم پروتئین انریق شده است. اما با توجه به شکل شماره ۶ نمی‌توان گفت در جذب ۷۰ نانومتری که با تغییر در وضع رنگ‌های اروماتیک صورت گرفته تئیه تغییرات ایست که پایاپورین بر ساختار آلبومین وارد کرد است. به عبارت دیگر پایاپورین ساختار سوم پروتئین تغییر ایجاد کرده و باعث شده ساختار دوم پروتئین بیشتر بشود. در این که همان طوری که می‌دانیم در شکل گیری ساختار سوم پروتئین بر همکنش‌های ضیف داری اهمیت می‌باشد و از مهم‌ترین این بر همکنش‌ها بی‌توجهی در گرده‌بست اروماتیک را تحت تاثیر قرار می‌دهد(۱۷)، از طریق در ساختار پایاپورین نیتروژن و اکسیژن وجود دارد که قابلیت تکثیر بی‌توجهی هیدروژن با آلبومین را دارد(۱۷). در تئیه با وان ساختار سوم اتفاق افتاده و نتایج‌هایی بیشتری در تامس با قند قرار گرفتن و گلیکوز شبدان شکل اتفاق افتاده و در تئیه گلیکوز شبدان ساختار دوم پروتئین به صورت آلبومین هیپک و افزایش صفحات بتا تغییر یافته است که در شکل‌هایی از دروم شماره ۱ می‌توان مشاهده کرد(که این نکته‌ها لازم است که جذب پایاپورین با بلاک صفر گردیده است).
References

Agonist Effect of Papaverine on Human Serum Albumin Glycation

Ahmadzadeh A1*, Feizie M2, Habibi Rezaie M3

(Received: 25 Aug. 2010 Accepted: 14 Feb. 2011)

Abstract

Introduction: Glycation is a non enzymatic reaction initiated by the primary addition of sugar to the amino groups of proteins. In the early stage of glycation, the synthesis of intermediates leading to formation of Amadori compounds occurs. In the late stage, advanced glycation end product (AGE) is irreversibly formed after a complex cascade of reactions. Glycation also affects diabetes-related complications, physiological aging and neurodegenerative diseases such as alzheimers.

Materials & Methods: In this study, HSA incubation with glucose and different concentration of papaverine for 42 days at 37°C. as well as HSA incubation alone (control sample), with glucose (glycated sample) were treated respectively under the same conditions. After 42 days, the samples by use of circular dichroism, fluorescence and UV spectroscopy were investigated.

Findings: HSA glycation increases alone with rising of papaverine concentration. Samples containing papaverine showed more changes in secondary structure, free amino groups and AGE fluorescence in relation to glycated and control samples.

Discussion & Conclusion: In glycated α helix and β sheet a 5.7% decrease and 3.1% increase were seen in comparison to the control respectively. Glycated showed 14.2% fluorescence more than the control. Free lys number in glycated showed 8% less in relation to the control. All this cases showed more changes in samples which contained papaverine. HSA absorb in presence of papaverine showed that papaverine cause more lys contact with sugar and an increase in glycation.

Keywords: glycation, human serum albumin, papaverine

1. Dept of Cell & Molecule, Faculty of Biology, University Tehran, Tehran, Iran
2. Dept of Environment, Faculty of Technique & Engineering, University Chamran, Tehran, Iran
3. Dept of cell & molecular, Faculty of biology, university of Tehran
*(corresponding author)

Scientific Journal of Ilam University of Medical Sciences