طراحی و ساخت دستگاه نمونه‌برداری میکروپایی از چاه‌های دستی، نیمه عمیق، مخازن آب و منابع غیرقابل دسترسی مستقیم

علي عمارلویی، پژوهشگر ایرانی، محمد حسنی کلهری

تاریخ دریافت: 1399.07.23 / پذیرش: 1399.07.23

چکیده

مقدمه: به منظور کنترل کیفیت میکروپایی آب چاه‌های دستی، نیمه عمیق، مخازن آب و منابع غیرقابل دسترسی مستقیم برای نمونه‌برداری، لازم است از این منابع نمونه‌برداری تحت شرایط استاندارد انجام شود. با طراحی و ساخت دستگاه نمونه‌برداری نیمه عمیق مخازن، نمونه‌برداری اصولی امکان‌پذیر می‌شود.

مواد و روش‌ها: طراحی و ساخت این دستگاه کاملاً ابداعی بوده و شامل جعبه محافظ، شارژ بالاکششده و قسمت پایین رونده می‌باشد. این دستگاه به کمک جریان الکتریسیته که توسط پانزده شارژ تأمین می‌شود، عمل می‌کند و پس از کردن درب بطری نمونه‌برداری را در عمق مورد نظر از سطح آب انجام می‌دهد.

یافته‌های پژوهش: دستگاه موردنظر با توانمندی‌های قابل انتظار ساخته شده و در حضور داوران مورد آزمایش قرار گرفت. دستگاه به نحوی ساخته شده است که قسمت پایین رونده آن که با آب تماس دارد، قابل استریل کردن در فوری باشد.

بحث و نتیجه‌گیری: دستگاه ساخته شده توانمندی نمونه‌برداری از عمق بیشتر از 40 سانتی‌متر از سطح آب دارد. به نحوی که درب بطری نمونه‌برداری در همان عمق نازک و پس از برداشت نمونه بسته می‌شود. دستگاه می‌تواند از نظر ظرفیت، حجم و وزن مشکلاتی را دارد که براز اصلاح آن لازم است اقداماتی از قبیل استفاده از مواد فایبرگلاس در ساخت دستگاه صورت گیرد.

واژه‌های کلیدی: آب، دستگاه نمونه‌برداری، کیفیت میکروپایی

Email: amarloei@noavar.com
1- عضو هیئت علمی گروه بهداشت محیط دانشگاه علوم پزشکی ایلام - نویسنده مسئول
2- کارشناس بهداشت محیط
طراحی و ساخت دستگاه نمونه برداری میکروسیمی از جاهای دستی، نیمه عمیق...

مقدمه

جیات و سلامت انسانان به آن سالم و کافی بستگی دارد. در صورتی که هر چه بیشتر و هم چنین گرمی‌گیری و خطر انتقال، بیماری‌ها تلاش کرده است نیاز به بیماری‌ها را کاهش داده و یا کنترل نماید. بنابراین به عنوان روشنی برای شناخت و کنترل بیماری‌ها، آزمایش‌های میکروسیمی (فیبروسкопی) را بیان نماید.

شرکت اساسی برای صحیح بودن نتایج آزمایش‌های میکروسیمی، نمونه برداری، حمل و نگهداری نمونه طراحی و مطابق با استانداردهای مربوطه است. در حال حاضر در عرصه نمونه برداری از آن جاهای دستی و نیمه عمیق، مخازن و منابع آب قابل دسترسی مستقیم برای نمونه برداری اصول و استانداردهای لازم برای نمونه برداری از منابع فوقالنرده، نوع دستگاه رایع خواهد شد (1.3.1.2).

مواد و روش‌ها

طراحی و ساخت این دستگاه کاملاً ابتدایی و برای سیستم به وضعیت موجود چنین باید قابل دسترسی مستقیم برای نمونه برداری، اصول و استانداردهای لازم برای نمونه برداری از منابع فوقالنرده، نوع دستگاه رایع خواهد شد.

1- سطح خارجی طبی استریل شده

در حین انتقال و با نمونه برداری آن، شده و در هنگام نمونه برداری این آزادی وارده نمود شود.

2- در مسیر حرکت به سمت بالینی و بالا بر چاه‌های طبی، در حین نمونه برداری، میکروسیمی‌ها معلق در هوا وارد بیماری را یاد نمود.

3- بیشتر این که از طریق می‌شود از سطح آماده که نمی‌تواند به علت عدم کلید که از طریق این وارد می‌شود برای باشند و مطابق با استانداردهای مربوطه نیست.

4- ممکن است گرمی‌گیری و خاشک و سایر مواد خارجی موجود در سطح آب وارد بیماری شوند.

برای جلوگیری از این مشکلات تناهی راه عملی این است که اولاً قسمت خارجی
۲- قسمت یک، باین روونده: این قسمت شامل قطعات و جهش‌های دیزل می‌باشد.

۳- بیان مدتی: جریان مصرف ۷ امیر و ۱۷۱ در ان دخیره می‌شود تا برک لازم را برای کدام نمونه بردی ارایه کند. بکار شار ان طرفدار نامی بر موردی برای

چندین برو نمونه برداری را دارد.

ب- سیستم عالی نیست: هرمان با

با ناشنده در برک یم درا در عمق ۲۵ سانتی متری، آن به صدا می‌آید.

ج- شناور: از طرف آب نیروش به آن وارد شده با استفاده از الیاف ارایه

مختص نیست به شدت مدار و در تنها شروع به کار هرمان قسمت

باکستنی و الرم می‌شود.

د- بالاکشندی در برک یم: متشکل از

یک اتوماتیک استاندارد، میله نیروی نیرو، و دو جفت پری بانک نیرویی خمده

با یک مجموعه با استوانه نیرویی

حاصل از خرید کردن اتوماتیک به درب

بطری آن را بکند.

ه- قطعه نگهدارنده برک یم: این قطعه به

برک نمونه برداری وصل شده و به

همراه آن در داخل فور استرل می‌شود.

این قطعه با کروم ایکس فشاری شده و

در مقابل اکسیدنیم مقاوم است.

و، کلین قطعه و صل طراحی زمانی که

۲۵ میلی‌متری به عمق ۷۰ سانتیمتری از زیر سطح آب

می‌پردازد این کلین مدار را می‌پندد و

سپس عمل بار دادن در برک یم و به

صدای درامد سیستم عالی نیست به

صوت هرمان اتوماتیک می‌شود.

ز- اشکالی جدیدترین: پس از بالا

کشید قسمت پایین رونده و متفاوت

برای جدید کردن برک یم نگهدارنده

از سایر قطعات قسمت پایین رونده و

جدای گرفتن از قطعه نگهدارنده، از

آن استفاده می‌شود (شکل ۱).

باین های بروز

براساس پیش بینی‌ها و طبق مشخصات

تعیین شده، دستگاه موردی با توجه به

امکانات موجود و در دسترس، ساخته

شد و کار کلیه قسمت‌های الکتریکی و

مکانیکی آن با جوهر دارون طرح مورد
آزمایشگاه ارسال میکروپیم و در نهایت قطعه نگهدارنده و قسمت پایین رونده را در سر جایشان قرار می‌دهیم (شکل 1).

شکل 1: نمای کلی دستگاه
1- جعیه محافظ 2- باتری 3- شارژر 4- بالاکشندگانه 5- نمایش حمل 6- استوانه جداینده 7- زایده نگهدارنده

شکل 2: قطعه پایین رونده
1- باتری 2- شناور 3- اتوماتیک استارت 4- انتقال 5- بلورینگ 6- انتقال خمیده 7- قطعه نگهدارنده بطری 8- کلید قطع و وصل جریان 9- سیستم علامت دهنده 10- بطری نیمه برداری
شکل ۲: آماده‌سازی برای استریل کردن قطعه پایین رونده

شکل ۳: نحوه استقرار دستگاه بر روی مخازن آب

شکل ۵: نحوه جداسازی بطری نمونه برداری از قطعه پایین رونده
بحث و نتیجه‌گیری

با توجه به آزمایشاتی که بر روی دستگاه ساخته شده بعمل آمد، نمونه‌برداری با این دستگاه، دستیابی به روش‌های مطمئن در زمینه نمونه‌برداری میکروبری مبتلا به ماشین‌هایی که بدون وجود خود از دستگاه در داخل وجود ندارد و در مانع خارجی هم به دستگاهی به هرم و شکل و توانایی دستگاه مذکور اشاره نشده است. در پایان موارد گزارش اصلی تغییرات ضروری دستگاه به لحظه حجم و وزن و ظرفیت آن مفید بوده و بیشترین می‌گردد.

1- ساخت جعبه محافز از جنس فایبرگلاس یا پلاستیک فشارده که وزن

منابع

1- امباری، گیتی؛ اعتمادی قریب، زهرا. آزمایش‌های آب و پساب. دانشگاه علوم پزشکی اصفهان.

2- ندافی، کاظم؛ یزدانی‌خسی، احمد. کنترل گیفتی آب آشامیدنی در اجتماعات کوهک. دانشگاه علوم پزشکی تهران، 1369.

A Device Design for Microbiologic Sampling of Semi-deep Manual Wells, Water Tanks, and Directly Inaccessible Sources

Amarlooei A., Nassri Y., Mohammadi Kalhori E.

Abstract

Introduction: To control the microbiological quality of water in semi-deep manual wells, water tanks as well as directly in accessible sources, it is necessary to follow a standardized sampling. By designing and making suitable sampling apparatus, a principal sampling will be possible.

Methods & Materials: It is fully innovative to design such a device with a protective box, charger and up-pulling and down-running system. The device, using an electrical rechargeable battery, opens and closes the sampling bottle cap on any given depth of water.

Findings: The mentioned apparatus with its expected capabilities was invented and tested under qualified referees. The device has been made in a way its down-running part, due to its contact with water, is sterilizable in ovens.

Conclusion: This device is able to take samples at the depth of over 20 cm. in water, so that the bottle cap opens at the same depth and shuts down after taking the sample considering the weight, capacity, and delicacy. There are some problems with this device, but improving suggestions to obliterate the defects, such as using fiberglass in making process, have been presented.

Key words: Water, sampling apparatus, microbiological quality.