جکده

مقدره: آلبریم سرم انسانی (HSA) برونتینی است که زنجیره‌ای با 850 اسید آمینه و وزن مولکولی ۷۵۰۰۰ دی‌هدروآمینه در حالت اسیدهای چرب تا نیتریک تهیه می‌شود. A4 و B5 به ترتیب همراه با مک مالکولی همراه آن تا ۸۰% به فشار اکسیدی کننده آن همراه می‌شود. در این مطالعه به منظور بررسی اثر تب در تأثیر فشار اکسیدی کننده آن در آلبریم سرم انسانی داده شده و سطحی در دمایه مورد نظر مطالعه می‌شود.

مواد و روش‌ها: در این مطالعه تجربی تغییر فاز آلبریم سرم انسانی در دمایه ۳۰ و ۴۵ در ۱۰۰ و ۱۵۰ mM حضور غلظت‌های مختلف سدیم دودسیل سولفاید (SDS) از طریق اسپیروکوئی مطالعه شد. محاسبه احتمال شده برای نمایش روابط فیزیکی شیمیایی موجود در متاب سر به انجام مورد غرفت. هر آزمایش انجام گرفته مورد شگرفت بعد از دور دما از نظر طبیعی و دمایی داده ۳۵ و ۴۵ در مجاورت می‌باشد. اما مرحله ۱ و ۲ تغییر فاز در دمایه ۳۰ و ۴۵ در دمای ۱۵۰ نتیجه‌گیری می‌باشد.

نتیجه‌گیری نهایی: برهمکنش HSA-SDS در ۲۵ و ۴۵ در ناحیه برهمکنش‌های الکتروستاتیکی این مطالعه تغییر فاز در دمای ۲۷ در با ۳۵ در ناحیه برهمکنش‌های الکتروستاتیکی انرژی داده ۳۵ است. نتایج این در حالت تب (افراشید دما بین از ۲۷ تا ۳۵ در ۲۷ در جداگانه با سطحی آلبریم و نقش آن در تأثیر فشار اکسیدی کاهش می‌یابد و با افراشید اثر ناحیه برهمکنش می‌ریزد. در کاهش دما بین نیز به عده می‌گردد.

واژه‌های کلیدی: آلبریم سرم انسانی، سدیم دودسیل سولفاید، طبقه‌بندی، تب

Email: tavirany@yahoo.com

- دانشجوی کارشناسی ارشد دانشگاه علوم پزشکی ایران، تغییرات و تجربه‌ها
- استادیار دانشگاه علوم پزشکی ایران، تغییرات و تجربه‌ها
- دانشکده پزشکی دانشگاه علوم پزشکی ایران، تغییرات و تجربه‌ها
- دانشکده پزشکی دانشگاه علوم پزشکی ایران، تغییرات و تجربه‌ها
- دانشکده پزشکی دانشگاه علوم پزشکی ایران، تغییرات و تجربه‌ها
- دانشکده پزشکی دانشگاه علوم پزشکی ایران، تغییرات و تجربه‌ها
- دانشکده پزشکی دانشگاه علوم پزشکی ایران، تغییرات و تجربه‌ها
- دانشکده پزشکی دانشگاه علوم پزشکی ایران، تغییرات و تجربه‌ها

شماره سوم، شماره سوم، دانشگاه علوم پزشکی ایران، تغییرات و تجربه‌ها

۱۳۸۵ ماه مه ماه ماه مه ماه مه ماه ماه مه ماه مه ماه مه ماه ماه ماه ماه ماه مه ماه ...
مقدمه
آلومین سرم انسانی بوتینیک تک زنجره‌ای است که شامل 580 آسید آمینه و وزن مولکولی آن 67 کیلوگرام HSA می‌باشد (1). ساختارش به دو قسمت شامل سه ساختار به دو جزئی آن نیز در دو زمینه مورد نظر قرار می‌گیرد: فیزیکی و HSA تأمین فیزیکی خون و HSA تأمین غلظت فیزیکی مختلف از پیوند فیزیکی مانند میکرو، ریکت، کالسیوم، اسیدهای چرب، استردهای آمینه، هورمونها و طب وسیعی از داروها و … هر فلزات می‌باشد (5-14).

1. معرفی محققان

2. مراحل و روش‌ها

3. نتایج

4. بررسی و نتیجه‌گیری

5. شکل نتایج

6. توصیه‌ها

7. پیامدهای محور

8. مهاجرت ها و پژوهش‌های دیگر

9. اشارات نهایی

10. تأثیر تب بر نقش آلومین سرم انسانی در تامین فشار اسکچی فوئن

1. HSA
2. SDS
3. Sigma
4. Merck

28
نحوه قیل و پایان تغییر فاز نرمی شد و با استفاده از فرآیند دو حالت (۲۳) کسر دنباله، نابیناده و مقدار SDS (۲۴) در غلظت‌های مختلف محاسبه گردید.

با فته‌های پژوهش

نمودار تغییرات جذب آلومین سرم انسانی در حضور غلظت‌های مختلف ماده فعال سطحی آنیوین سدیم

شکل ۱: جذب آلومین در دماهای ۲۰ و ۲۵ در طول موج‌های مختلف

شکل ۲: نتایج تغییرات SDS برای فاز از طریق بروز پایه نمواد در محاسبه SDS و ماده فعال SDS ۲۰/۲۰
شکل ۲:
جدول 1. مقادیر $\Delta G^{\circ}_{H_2O}$ و $\Delta G^{\circ}_{I/2}$ (SDS) برای مراحل سه گانه تغییر فاز آلومینیوم سرم انسانی

<table>
<thead>
<tr>
<th>مراحل</th>
<th>$\Delta G^{\circ}_{H_2O}$</th>
<th>$\Delta G^{\circ}_{I/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>$20^\circ C$</td>
<td>$25^\circ C$</td>
</tr>
<tr>
<td>II</td>
<td>$15^\circ C$</td>
<td>$20^\circ C$</td>
</tr>
<tr>
<td>I</td>
<td>$10^\circ C$</td>
<td>$15^\circ C$</td>
</tr>
</tbody>
</table>

بحث و نتیجه‌گیری

تغییر فاز آلومینیوم ناشی از برهمکنش SDS با دمای $25^\circ C$ برخوردار همیوشای دارد. می‌تواند حالت آلومینیوم در حالت مرحله III را یک حالت غیرطبیعی مولکول فرسکو و یا بیان‌های مدل‌های زیر را در خوشه تغییر فاز آلومینیوم ایجاد داشته باشد.

$\Delta G^{\circ}_{H_2O}$ به سبب ترتیب حالت‌های غیرطبیعی، حد اولی و حد واسط دوم و حالت غیرطبیعی آلومینیوم می‌باشد. به منظور مقایسه دقتی مراحل تغییر فاز در دمای $25^\circ C$، $\Delta G^{\circ}_{H_2O}$، این مراحل به عنوان تابعی از SDS در شکل‌های 2 و 3 رسم شده است. یکی از باران‌هبایی مهم در مقایسه یک باران‌هبایی SDS مولکول در شرایط مختلف، مقایسه $\Delta G^{\circ}_{H_2O}$، غلظت صفر مولکول متفاوت SDS برای مراحل سه گانه تغییر فاز آلومینیوم در $25^\circ C$ و $20^\circ C$ و غلظت $20^\circ C$ [SDS]. [SDS] $25^\circ C$ و لغزش [SDS] به آن غلظت از SDS نصف مولکول‌ها در مرحله مورد نظر تغییر فاز می‌باشد و بنابراین $\Delta G^{\circ}_{H_2O}$ به حالت $K=1$ و $=2$ می‌باشد.

محافظه کننده مولکول‌های دانه‌های مجهز به چربی (هیدروکوئن) مولکول در معرض بافر فاز می‌گیرد با تغییر فاز به خلط (کروموفوکسی) که از طریق به سطح (تصویری) نمایی می‌کند به سطح (تصویری) نمایی می‌کнд
تأثیر تب بر نشک آلومین سرم انسانی در تأمین هزاران و فون

می‌باشد(17). عدم پایداری جزیی در 25 درجه سی‌گراد در 55 درجه سی‌گراد و با تغییر همک ثانیه‌ای در میزان همک ثانیه‌ای، می‌تواند منفی اثراتی داشته باشد و به همین سبب کاهش نشک کانونه‌ای اطراف انجام فشار اسیری خون می‌سوزد. در توجه به فبلغ کلیوی آب (میزان ادرار) هنگام تب (افراشیت دما بدن به 23 درجه سی‌گراد می‌باشد. با توجه به طرفین گرامایی آلای آب و افزایش ادرار هنگام تب می‌توان نشک گرفت که به‌طور خاص هنگام تب راه مغزی در کاهش دما بدن (یا سطح‌هایی از افراشیت دما) می‌باشد.

تشکر و یکسان

از معاونت م倡تر مترویی دانشگاه علوم پزشکی شهید بهشتی و دانشکده پزشکی دانشگاه علوم پزشکی ایلام در حمایت از انجام این تحقیق سپاسگزاری می‌شود.

مراجع

1- مقدم نبا، سید حسن؛ رضایی طاوولی، مصطفی؛ رنجیر، پیژن؛ گلزاری، سوسن؛ خزاعی، مصطفی؛ ایامی، مجتبی؛ موسوی موجی، حسن‌اکبر. جد واسط جدید در ساختن آلومین سرم انسانی در اثر ایجاد نتیجه‌های علمی پژوهشی دانشکده پزشکی دانشگاه علوم پزشکی و خدمات بهداشتی درمانی شهید بهشتی، علوم پزشکی. 2017: 118-113.

2- رضایی طاوولی، مصطفی؛ موسوی موجی، حسن‌اکبر؛ آلبرزانی، ساختمان همگونی کنن توسط مواد سطحی فعال، فصلنامه مجله زیست شناسی ایران، 1/1، رمستان 1374: 20-23.

3- رضایی طاوولی، مصطفی؛ پژوهشی، رضا؛ رنجیر، پیژن؛ نادری بنی، حسن. بیوفیزیک. چاب دوم، تهران: انتشارات سنجش تکمیلی، جاب 1382.

The effect of fever on the role of human serum albumin on the blood pressure

S.M. Mahdavi¹, M. Rezaei-Tavirani², S.H. Moghaddamnia³, K. Sakti², S. Hassanpour², L. Salahii⁴, B. Ranjbar⁴, Y. PourKhoshbakht³, M. Mostafavi¹

Introduction: Serum albumin (HSA) is a single strand protein, MW = 67.5 kD including 585 amino acid. Its main role in blood is regulation of blood osmotic pressure. It carries some metabolites and drugs in blood.

Materials and methods: In this paper the effect of sodium dodecyl sulfate (SDS) as an anionic surfactant on the function of HSA at the physiological and pathological temperatures (35°C and 45°C) is studied via spectroscopic method.

Results and discussion: The results indicate that SDS-HSA interaction is a three steps process including phases I – III. The phase III for tow temperatures is similar but the others are different. SDS in the low concentration interacts with proteins by electrostatic fashion. Therefore it seems that the pathological temperatures effects on the electrostatic properties of HSA. This effect alters the surface charges of HSA and leads to the reduction of the role of HSA in the providing of blood osmotic pressure at the pathological temperatures.

Conclusion: Fever causes the conformational change for HSA that leads to the reduction of body temperature.

Keywords: Human serum albumin, sodium dodecyl sulfate, spectroscopy, fever

1. Center of Science and Researches, Islamic Azad University, Tehran, Iran
2. Medicine faculty, Ilam medical University, Ilam, Iran
3. Faculty of Paramedical Science, Shaheed Beheshti medical University, Tehran, Iran
4. Faculty of Science, Tarbiat Moddares University, Tehran, Iran