شناسایی خطرات و ارزیابی ریسک به روش ETBA

بیمارستان شهدای پشتی کاشان در سال ۱۹۹۱

واژه‌های کلیدی: ریسک، خطر، ارزیابی ریسک، ETBA، سیستم حرارت مرکزی

توسط: هزا حسینی، دانشکده بهداشت، دانشگاه علوم پزشکی ایلام، ایلام، ایران

مجله علمی پژوهش دانشگاه علوم پزشکی ایلام
دوره بیست و سوم، شماره دوم، تیر ۹۲

چکیده
مقدمه:
زاویه‌های دیه‌پیچی در دیوارها و مادرین امروز کلیه کاراها به تکنولوژی پیچیده و پیشرفته و است. بیمارستان‌ها نیز از جمله مکان‌هایی محسنه‌تر که رعایت ملایمیت ایمنی در بخش‌های مختلف از جمله شیشه، در دیوارها و هم‌بستگی می‌شود. سیستم حرارت مرکزی مانند قابل بیمارستان است که نه تنها به ایجاد مصرف شرایط بیمار نیز کمک می‌کند. این مطالعه شناسایی و ارزیابی ریسک خطرات موجود با استفاده از روش ریسک منطقی و تحلیل حفاظت در سیستم حرارت مرکزی بیمارستان پایین است.

مواد و روش:
این مطالعه دوره‌ای در سال ۱۳۹۲ در گروه بیمارستان‌های موردی انجام گردید. جهت شناسایی خطرات و ارزیابی ریسک از روش ETBA استفاده شد. اطلاعات مورد نیاز جهت انجام این مطالعه با استفاده از روش های مهندسی، میجی، و یونیتی، و درجه‌بندی که در سیستم حرارت مرکزی بیمارستان‌های مورد استفاده گردید، بررسی و مدارک مشابه گرفته شد.

یافته‌ها:
پژوهش در مجموع ۸ خطر مشاهده شد که از بین آن ها ۱۲ خطر اصلی و ۳۵ خطر منطقی شناسایی شد که از بین آن ها ۱۲ خطر غیر قابل قبول، ۴ خطر نامطلوب و ۳ خطر اصلی قابل قبول بود. شبیه‌سازی سطح ریسک مرطوب به ارزیابی شیپونی و آنتزی اکسترمینت بود.

بحث و توصیه‌های کلی:
با توجه به بالا بودن نسبت خطرات شناسایی شده و ریسک مرطوب به آن ها در سیستم حرارت مرکزی، بیمارستان‌های جهت جلوگیری از بروز حوادث لازم است اقدامات اصلاحی در جهت کاهش سطح ریسک خطرات در این محیط انجام گیرد.
اساس این منطق شکل گرفته است که «Experience ناشی از
جاده در اثر تبادلات ناخوشه ای که در جریان عبور ازینی
از خاطرات به درون اهداف در معرض تبادل، مرگ می‌دهد، به
وجد می‌آید.» در یکی از این خاطرات سایپ شرکتی او می‌باشد.
این اثرات کیفی است که بر توصیه جزئیاتی بیشتری از
ریسک‌های ارزیابی ارائه می‌شود. در این روش، شکاف
میان‌کار در ارزیابی کاریابی های ایجاد شده از
سیستم‌ها و عملیات انجام می‌شود (10).

مقدمه

در دیگر پیشنهاد و مدل‌های کلیه کاره و امور به
تکنولوژی پیچیده و پی‌همبسته وابسته است. با این هم‌های
توسعه ذهنی ای که باعث بروز حوادث جراح

مقدمه

 اوی از آن. سزارت این در طی آمارهای موجود از سال
1399 تاکنون تفاوت ناشی از کارگاه بیشتر از تفاوت جنگ و
سابر بلاایی طبعی بوده است(10). همی روزه در محتوای کار
حوادث زاده رض رده ده مت در بیشاب به مرگ و آسپر می -
شود افزونی آن. سیرت این استفاده از هوش مایا در ستار
هشتمدهنه و بحرانی است و تجزیه آن به میلادی دلال می

و در باشی با اسپتیکیتی از جاده در
نظر گرفته(5). نقض آگاهی، گزاری تخریبی و واگراجی
بیشتر اینم تابع یمتی بیماری بیماریاتی را در مان سمال
این اشارات که (کی(1)). مدت آغاز و تحلیل
این مختلف بیماریات زمانه که کاشح خطای و دعاوی
اختلالی می‌تواند.

و این در بیماریات این ممکن است. این استفاده، ابتدا در
حوادث نیز با مایلی زیادی برای بیماریاتی در این دو مدت
این در بیماریات دارای یکی از این استفاده.

سیستم جراحی نیز که در ممان سمال
به حرفه ای برای کاریابی و سطح حوادث است(6). خطر به
عوامل ویژه‌ای یا توان‌های بالقوه یک ماه، قابلیت برای ایجاد
ایجاد آسپر سه این است و ریسک به معنی میزان احتمال
یک ماه، قابلیت برای ایجاد(به طرف دیگر) برای ایجاد آسپر
یا(10). همی روزه در محتوای کار

این استفاده.

ازبیاپیت ریسک شناسایی خطرات موجود در دیگر آرای
یک شغل، محاسبه عدد ریسک آن ها و اقدامات فیک
مناسب جهت کنترل آن ها با مشابهت در دو ارزیابی
ریسک فیزک برای این چهار مدت ایست که شامل

افقا نتیجه‌گیری

(10).

گری برای ارزیابی این روش افتخاری از روش معرفی، مصاحبه با
Walking-Talking Thorough

گری برای ارزیابی این روش افتخاری از روش معرفی، مصاحبه با

۱۳
یافته‌های پژوهش

بر اساس کاربردی‌های تکمیل‌شده در مجموعه ۸ آنژی و ۲۵ خطر شناسایی شده که براساس رتبه‌بندی ریسک‌ها در روش، تعداد ۱۲ خطر در سطح ریسک غیرقابل قبول، ۳۰ مورد نامتطبیعی، ۲ مورد قابل قبول بیش از تجدید نظر و ۱۰ مورد قابل قبول بدون تجدید نظر حاصل شد. از جمله شماره ۱ ارزیابی ریسک خطرات مربوط به انژی شیمیایی را نشان می‌دهد. همان گونه که در این جدول نشان داده شده است، ۱۲ خطر مربوط به انژی شیمیایی بود که دارای ۳ خطر سطح ریسک غیرقابل قبول، و ۸ سطح ریسک نامتطبیعی و ۱ خطر سطح ریسک قابل قبول بیش از تجدید نظر داشتند.

جدول شماره ۱: ارزیابی ریسک خطرات مربوط به انژی شیمیایی

<table>
<thead>
<tr>
<th>سطح ریسک نامتطبیعی</th>
<th>کنترل شناسایی</th>
<th>سطح ریسک قابل قبول</th>
<th>کنترل های موجود</th>
<th>نحوه تاثیر</th>
<th>نوع انژی</th>
<th>نام انژی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳E</td>
<td>۲A</td>
<td>۳C</td>
<td>۳C</td>
<td>۲B</td>
<td>۳D</td>
<td>ارزی شیمیایی</td>
</tr>
<tr>
<td>پایه و اطراف ترمیم مالوم در محیط MSDS</td>
<td>نصب گفتنی در ارتفاع</td>
<td>جاسزای مختلط و کشی گاز</td>
<td>نصب گفتنی در ارتفاع</td>
<td>نصب گفتنی در ارتفاع</td>
<td>نصب گفتنی در ارتفاع</td>
<td>لامیناکن</td>
</tr>
</tbody>
</table>
جدول شماره 2 خطرات و ارزیابی ریسک مربوط به افزایش شدید نوسان دقیقهی الکترونیکی به ارزیالگری، در این جدول نشان داده شده است تا افزایش با انرژی الکتریکی زیاد 10 خطر شناسایی شد که از این میان 5 مورد شناسایی خطرات و ارزیابی ریسک به روش ETBA در سیستم … ولی سرسنگی و هوکاراى

جدول شماره 3 شناسایی و ارزیابی ریسک خطرات مربوط به انرژی الکتریکی

| نام ارزو | نوع ارزو | اهداف بالقوه | نشان های ناتیورال | برای قرگنی، دستگاه با کابلی بری، ورود کریپسیی یا تغییرات فلزی | برای فیتسیونی، پرتاب شدن | شدن | سکستگی
|----------|---------|-------------|-----------------|-------------------|-----------------|--------|--------|
| تجهیزات تلیفهای بری | انسان | 2C | تعمیم نیاز‌های هر | شبدکهای با کابلی بری | ورود کریپسیی | پلاستیک جلوی | ثبتی
| تجهیزات تلیفهای بری | خرای دستگاه | افرازرات بین رفت دستگاه‌ها | اصلاح
| محیط کاری افزایش | شیوع | انت‌سوی، از بین رفتن تجهیزات | 1B | نقش‌بازی | منابع | راهبرد | پیش‌بینی
| محیط کاری افزایش | انسان | 3C | استفاده از فوئر مصرف‌های دستگاه | برخی دستگاه‌ها | تکرار | خرای دستگاه | تغییرات
| محیط کاری افزایش | جریان | آتش‌سوزی | مکا، جهت غیر سیم | آتش‌سوزی | زمان | خرای دستگاه | تغییرات
| محیط کاری افزایش | انسان | 1C | مکاگه دستگاه، مصرف‌های غیر سیم | مکا | زمان | خرای دستگاه | تغییرات
| محیط کاری افزایش | برق | افزایش هوای | مکا | افزایش هوای | مکا | صدا | برق
| محیط کاری افزایش | روشنایی | افزایش هوای | مکا | افزایش هوای | مکا | صدا | برق
| محیط کاری افزایش | انسان | 3D | علمی جریان روش‌های نظارت‌ها و شبیه‌سازی | علمی جریان روش‌های نظارت‌ها و شبیه‌سازی
| محیط کاری افزایش | برق | 2B | تکرار اصلاً | برق | 2B | تکرار اصلاً | برق
| محیط کاری افزایش | روشنایی | برق | تکرار اصلاً | برق | 2B | تکرار اصلاً | برق
| محیط کاری افزایش | انسان | 3D | علمی جریان روش‌های نظارت‌ها و شبیه‌سازی | علمی جریان روش‌های نظارت‌ها و شبیه‌سازی
| محیط کاری افزایش | برق | 2B | تکرار اصلاً | برق | 2B | تکرار اصلاً | برق
| محیط کاری افزایش | روشنایی | برق | تکرار اصلاً | برق | 2B | تکرار اصلاً | برق
| محیط کاری افزایش | انسان | 3D | علمی جریان روش‌های نظارت‌ها و شبیه‌سازی | علمی جریان روش‌های نظارت‌ها و شبیه‌سازی

خطر ناشی از انرژی مادون قرنی بیشترین سطح ریسک نسبت به سایر انرژی‌های فیزیکی را دارد.

جدول شماره 4 خطرات و ارزیابی ریسک مربوط به انرژی الکتریکی (سیانی، گرمای سیانی و نابی) را نشان می‌دهد. همان‌گونه که در جدول شماره 3 نشان داده شده است.
جدول شماره 3. شناسایی و ارزیابی ریسک خطرات مربوط به انرژی صدا، گرمای هوا، سرمای و ناشی

<table>
<thead>
<tr>
<th>صفحه</th>
<th>عنوان ریسک</th>
<th>کنترل / پیش‌نهادی</th>
<th>شناسایی و ارزیابی</th>
<th>اهداف بالقوه</th>
<th>نوع ارزی</th>
<th>نمایه ناتیور</th>
<th>محتوای ناتیور</th>
<th>توضیحات</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D</td>
<td>House keeping</td>
<td>3C</td>
<td>نصب دوکوبه‌های مساب برای کالاها و رگ‌های دوبیش‌های مشخص سر سر و آمد</td>
<td>بروز خطرات کمرئگی در کار</td>
<td>گرمای هوا</td>
<td>پتانسیل</td>
<td>سطح ناحیه</td>
<td>مورد جدایی</td>
</tr>
<tr>
<td>3D</td>
<td>-</td>
<td>3A</td>
<td>旖کسکی پارکی</td>
<td>گواهی</td>
<td>گرمای هوا</td>
<td>پتانسیل</td>
<td>سطح ناحیه</td>
<td>مورد جدایی</td>
</tr>
<tr>
<td>3C</td>
<td>-</td>
<td>3B</td>
<td>旖کسکی پارکی</td>
<td>گواهی</td>
<td>گرمای هوا</td>
<td>پتانسیل</td>
<td>سطح ناحیه</td>
<td>مورد جدایی</td>
</tr>
<tr>
<td>3C</td>
<td>-</td>
<td>3B</td>
<td>旖کسکی پارکی</td>
<td>گواهی</td>
<td>گرمای هوا</td>
<td>پتانسیل</td>
<td>سطح ناحیه</td>
<td>مورد جدایی</td>
</tr>
<tr>
<td>4D</td>
<td>-</td>
<td>3A</td>
<td>نصب دوکوبه‌های مساب برای کالاها و رگ‌های دوبیش‌های مشخص سر سر و آمد</td>
<td>بروز خطرات کمرئگی در کار</td>
<td>گرمای هوا</td>
<td>پتانسیل</td>
<td>سطح ناحیه</td>
<td>مورد جدایی</td>
</tr>
<tr>
<td>3D</td>
<td>-</td>
<td>3A</td>
<td>旖کسکی پارکی</td>
<td>گواهی</td>
<td>گرمای هوا</td>
<td>پتانسیل</td>
<td>سطح ناحیه</td>
<td>مورد جدایی</td>
</tr>
<tr>
<td>3C</td>
<td>-</td>
<td>3B</td>
<td>旖کسکی پارکی</td>
<td>گواهی</td>
<td>گرمای هوا</td>
<td>پتانسیل</td>
<td>سطح ناحیه</td>
<td>مورد جدایی</td>
</tr>
<tr>
<td>3C</td>
<td>-</td>
<td>3B</td>
<td>旖کسکی پارکی</td>
<td>گواهی</td>
<td>گرمای هوا</td>
<td>پتانسیل</td>
<td>سطح ناحیه</td>
<td>مورد جدایی</td>
</tr>
</tbody>
</table>

جدول شماره 4 خطرات و ارزیابی ریسک خطرات مربوط به انرژی پتانسیل، جنیشی و انرژی های متفرقه (سپوکت‌ها، گیبرکند، افتاب و...). نشان می‌دهد از بین خطرات که
بحث و نتیجه گیری

یافته‌های مطالعه نشان داد که از 90 درصد خطرات موجود در ایال ریسک غیرقابل قبول و نامطلوب بودند. به دلیل همیث و ضرورت حدود طرافی که ریسک‌های غیرقابل قبول در کامیون و سایر ترین زمان‌ها ممکن، بررسی علی‌ای ایجاد ریسک‌ها و جوادی‌ها ناشی از آن ضرورت است که اهمیت داشته باشد. بنا بر این، تا نیازمندی، سیستم‌های ضروری و همکارانی در صنعت ریسک (۱۵۴/۱۵۴ ریسک‌شناسی) و ۸۰ درصد (۲۲/۳۷ درصد) وضعیت نامطلوبی داشتند. این اصول تفاوت را هنگام پیاض دربررسی و وضع مثبت می‌کند.

کاری در مطالعه رژوالشی (۲۰۱۷)...

شناخت خطرات و ارزیابی ریسک به روش ETBA در سیستم... یا سرسنجی و همکاران

وضعیت وضعیت نامطلوبی داشتند. این اصول تفاوت را هنگام پیاض دربررسی و وضع مثبت می‌کند.
8.Ahmad S, Adl J, Varmazyar S.J. Risk quantitative determination of fire and explosion in a process unit by dow`s fire and explosion index]. Iran Occup Health J 2008;5:39-46. (Persian)
9.Shirazi GH A.adl J. How to implement the ETBA technique in industry, A case study of technique impelment in isomax unit in Tehran
Detection of Hazards and Risk Assessment by ETBA Method in Central Heating System in Kashan Shahid Beheshti Hospital in 2013

Sarsangi V1, Kakae H2*, Pourmorad H2, Foroughidehnavi H2, Aboeemehrizi E2, Rahimizade A2, Nasrollahi A3

(Received: December 27, 2014 Accepted: February 18, 2015)

Abstract

Introduction: In the developed and modern world, all things are depended on complicated and risky technology. Hospitals are also among the high-risk areas that observances of safety considerations in different hospital section lead to reduce likely risk and lawsuits. Central heating system is like a hospital hearts that not only helps to create air conditioning but also helps to improve patient's condition. The aim of this study was to detection of hazards and risk assessment by ETBA method in central heating System in Kashan Shahid Beheshti hospital in 2013.

Materials & methods: This case study was conducted in the Kashan shahid beheshti hospital central heating system in 2013. ETBA method was used to hazards identification and risk assessment. Required information for this study was collected by field observations, interview with staff and engineers, energy checklist, investigation of technical documents and available maps by investigation team.

Findings: overall, 8 energy and 35 potential risks were identified that among them, the risk of 12 hazards was estimated unacceptable, 20 risks was estimated unfavorable and 3 risks was estimated acceptable.

Discussion & Conclusion: regarding to high number of identified hazards and associated risks which is related to them it is necessary that corrective measures to be taken to reduce the risk of hazards level in this place.

Keywords: Risk, Hazard, Risk assessment, ETBA, Central heating system.

1. Social determinants of Health promotion research center, Hormozgan University of Medical Science, Bandar Abbas, Iran
2. Dept of Occupational Health Engineering, Ilam University of Medical Sciences, Ilam, Iran
3. Dept of Occupational Health Engineering, Kashan University of Medical Sciences, Kashan, Iran
4. Dept of Environment Health Engineering, North Khorasan University of Medical Sciences, Bojnurd, Iran
5. Research Center for Prevention of Psychosocial Injuries, Ilam University of Medical Sciences, Ilam, Iran
*Correspondin author Email: Hojatkkae@yahoo.com

Scientific Journal of Ilam University of Medical Sciences